河北省石家莊市康福外國語學校2022年高一數學第一學期期末聯考模擬試題含解析_第1頁
河北省石家莊市康福外國語學校2022年高一數學第一學期期末聯考模擬試題含解析_第2頁
河北省石家莊市康福外國語學校2022年高一數學第一學期期末聯考模擬試題含解析_第3頁
河北省石家莊市康福外國語學校2022年高一數學第一學期期末聯考模擬試題含解析_第4頁
河北省石家莊市康福外國語學校2022年高一數學第一學期期末聯考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知為上的奇函數,,在為減函數.若,,,則a,b,c的大小關系為A. B.C. D.2.總體由編號為01,02,...,19,20的20個個體組成,利用下面的隨機數表選取5個個體,選取方法是從隨機數表的第1行第5列和第6列數字開始由左向右依次選取兩個數字,則選出來的第5個個體的編號為()7961950784031379510320944316831718696254073892615789810641384975A.20 B.18C.17 D.163.設函數,且在上單調遞增,則的大小關系為A B.C. D.不能確定4.已知函數,則函數的零點個數是A.1 B.2C.3 D.45.設全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},則A∩(?UB)=()A. B.C. D.6.定義域為R的函數,若關于的方程恰有5個不同的實數解,則=A.0 B.C. D.17.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.8.函數的圖象如圖所示,則函數y的表達式是()A. B.C. D.9.已知偶函數在區間內單調遞增,若,,,則的大小關系為()A. B.C. D.10.某同學用二分法求方程的近似解,該同學已經知道該方程的一個零點在之間,他用二分法操作了7次得到了方程的近似解,那么該近似解的精確度應該為A.0.1 B.0.01C.0.001 D.0.0001二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.函數的定義域是________.12.將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結論①AC⊥BD;②△ACD是等邊三角形;③AB與平面BCD成60°的角;④AB與CD所成的角是60°.其中正確結論的序號是________13.已知,,且,則的最小值為________.14.若函數,則函數的值域為___________.15.大西洋鮭魚每年都要逆流而上游回產地產卵,研究鮭魚的科學家發現鮭魚的游速v(單位:)可以表示為,其中L表示鮭魚的耗氧量的單位數,當一條鮭魚以的速度游動時,它的耗氧量的單位數為___________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.2022年新冠肺炎仍在世界好多國家肆虐,盡管我國抗疫取得了很大的成績,疫情也得到了很好的遏制,但由于整個國際環境的影響,時而也會出現一些散發病例,故而抗疫形勢依然艱巨.我市某小區為了防止疫情在小區出現,嚴防外來人員進入小區,切實保障居民正常生活,設置“特殊值班崗”.現有包含甲、乙在內的4名志愿者參與該工作,每人安排一天,每4天一輪.在一輪的“特殊值班崗”安排中,求:(1)甲、乙兩人相鄰值班的概率;(2)甲或乙被安排在前2天值班的概率17.在①函數的圖象向右平移個單位長度得到的圖象,圖象關于原點對稱;②向量,;③函數.這三個條件中任選一個,補充在下面問題中,并解答.已知_________,函數的圖象相鄰兩條對稱軸之間的距離為.(1)求;(2)求函數在上的單調遞減區間.18.已知四棱錐的底面是菱形,,又平面,點是棱的中點,在棱上.(1)證明:平面平面.(2)試探究在棱何處時使得平面.19.已知集合,(1),求實數的取值范圍;(2)設,,若是的必要不充分條件,求實數的取值范圍20.已知冪函數的圖象經過點(1)求的解析式;(2)設,(i)利用定義證明函數在區間上單調遞增(ii)若在上恒成立,求t的取值范圍21.已知角的終邊經過點.(1)求的值;(2)求的值.

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】由于為奇函數,故為偶函數,且在上為增函數.,所以,故選C.2、D【解析】利用隨機數表從給定位置開始依次取兩個數字,根據與20的大小關系可得第5個個體的編號.【詳解】從隨機數表的第1行第5列和第6列數字開始由左向右依次選取兩個數字,小于或等于20的5個編號分別為:07,03,13,20,16,故第5個個體編號為16.故選:D.【點睛】本題考查隨機數表抽樣,此類問題理解抽樣規則是關鍵,本題屬于容易題.3、B【解析】當時,,它在上單調遞增,所以.又為偶函數,所以它在上單調遞減,因,故,選B.點睛:題設中的函數為偶函數,故根據其在上為增函數判斷出,從而得到另一側的單調性和,故可以判斷出.4、A【解析】設,則函數等價為,由,轉化為,利用數形結合或者分段函數進行求解,即可得到答案【詳解】由題意,如圖所示,設,則函數等價為,由,得,若,則,即,不滿足條件若,則,則,滿足條件,當時,令,解得(舍去);當時,令,解得,即是函數的零點,所以函數的零點個數只有1個,故選A【點睛】本題主要考查了函數零點問題的應用,其中解答中利用換元法結合分段函數的表達式以及數形結合是解決本題的關鍵,著重考查了數形結合思想,以及推理與運算能力,屬于基礎題.5、D【解析】先求?UB,然后求A∩(?UB)【詳解】∵(?UB)={x|x<3或x≥5},∴A∩(?UB)={x|0<x<3}故選D【點睛】本題主要考查集合的基本運算,比較基礎6、C【解析】本題考查學生的推理能力、數形結合思想、函數方程思想、分類討論等知識如圖,由函數的圖象可知,若關于的方程恰有5個不同的實數解,當時,方程只有一根為2;當時,方程有兩不等實根(),從而方程,共有四個根,且這四個根關于直線對稱分布,故其和為8.從而,,選C【點評】本題需要學生具備扎實的基本功,難度較大7、B【解析】因為cos=-,即cos=-,所以sin=-,則sin+cosA=sinAcos+cosAsin+cosA=sin=-.故選B.8、A【解析】由函數的最大、最小值,算出和,根據函數圖像算出周期,利用周期公式算出.再由當時函數有最大值,建立關于的等式解出,即可得到函數的表達式.【詳解】函數的最大值為,最小值為,,,又函數的周期,,得.可得函數的表達式為,當時,函數有最大值,,得,可得,結合,取得,函數的表達式是.故選:.【點睛】本題給出正弦型三角函數的圖象,求它的解析式.著重考查了三角函數的周期公式、三角函數的圖象的變換與解析式的求法等知識屬于中檔題.9、D【解析】先利用偶函數的對稱性判斷函數在區間內單調遞減,結合偶函數定義得,再判斷,和的大小關系,根據單調性比較函數值的大小,即得結果.【詳解】偶函數的圖象關于y軸對稱,由在區間內單調遞增可知,在區間內單調遞減.,故,而,,即,故,由單調性知,即.故選:D.10、B【解析】令,則用計算器作出的對應值表:由表格數據知,用二分法操作次可將作為得到方程的近似解,,,近似解的精確度應該為0.01,故選B.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】利用已知條件可得出關于的不等式組,由此可解得函數的定義域.【詳解】對于函數,有,解得.因此,函數的定義域為.故答案:.12、①②④【解析】①取BD的中點O,連接OA,OC,所以,所以平面OAC,所以AC⊥BD;②設正方形的邊長為a,則在直角三角形ACO中,可以求得OC=a,所以△ACD是等邊三角形;③AB與平面BCD成45角;④分別取BC,AC的中點為M,N,連接ME,NE,MN.則MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是異面直線AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正確考點:本小題主要考查平面圖形向空間圖形的折疊問題,考查學生的空間想象能力.點評:解決此類折疊問題,關鍵是搞清楚折疊前后的變量和不變的量.13、12【解析】,展開后利用基本不等式可求【詳解】∵,,且,∴,當且僅當,即,時取等號,故的最小值為12故答案為:1214、【解析】求出函數的定義域,進而求出的范圍,利用換元法即可求出函數的值域.【詳解】由已知函數的定義域為又,定義域需滿足,令,因為,所以,利用二次函數的性質知,函數的值域為故答案為:.15、8100【解析】將代入,化簡即可得答案.【詳解】因為鮭魚的游速v(單位:)可以表示為:,所以,當一條鮭魚以的速度游動時,,∴,∴故答案為:8100.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)(2)【解析】(1)利用列舉法求解即可;(2)利用列舉法求解即可.【小問1詳解】由題意,設4名志愿者為甲,乙,丙,丁,4天一輪的值班安排所有可能的結果是:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,乙,甲),(丁,丙,甲,乙),共24個樣本點設甲乙相鄰為事件A,則事件A包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(乙,甲,丙,丁),(乙,甲,丁,丙),(丙,甲,乙,丁),(丙,乙,甲,丁),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,乙,甲,丙),(丁,丙,乙,甲),(丁,丙,甲,乙),共12個樣本點,故【小問2詳解】設甲或乙被安排在前兩天值班的為事件B則事件B包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲,丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),共20個樣本點,故.17、選擇見解析;(1);(2)單調遞減區間為.【解析】選條件①:由函數的圖象相鄰兩條對稱軸之間的距離為,得到,解得,再由平移變換和圖象關于原點對稱,解得,得到,(1)將代入求解;(2)令,結合求解.選條件②:利用平面向量的數量積運算得到,再由,求得得到.(1)將代入求解;(2)令,結合求解.選條件③:利用兩角和的正弦公式,二倍角公式和輔助角法化簡得到,再由,求得得到.(1)將代入求解;(2)令,結合求解.【詳解】選條件①:由題意可知,最小正周期,∴,∴,∴,又函數圖象關于原點對稱,∴,∵,∴,∴,(1);(2)由,得,令,得,令,得,∴函數在上的單調遞減區間為.選條件②:∵,∴,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得,∴函數在上的單調遞減區間為.選條件③:,,又最小正周期,∴,∴,(1);(2)由,得,令,得,令,得.∴函數在上的單調遞減區間為.【點睛】方法點睛:1.討論三角函數性質,應先把函數式化成y=Asin(ωx+φ)(ω>0)的形式

函數y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期為,y=tan(ωx+φ)的最小正周期為.

對于函數的性質(定義域、值域、單調性、對稱性、最值等)可以通過換元的方法令t=ωx+φ,將其轉化為研究y=sint的性質18、(1)證明見解析;(2)當時,平面【解析】(1)證明:,又底面是的菱形,且點是棱的中點,所以,又,所以平面.平面平面.(2)解:當時,平面,證明如下:連接交于,連接.因為底面是菱形,且點是棱的中點,所以∽且,又,所以,平面.19、(1)(2)【解析】(1)化簡集合,,由,利用兩個集合左右端點的大小分類得出實數的取值范圍(2)根據題意可得,推不出,即是的真子集,進而得出實數的取值范圍【小問1詳解】由題意,,且,或,或,實數的取值范圍是【小問2詳解】命題,命題,是的必要不充分條件,,推

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論