




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若時,恒成立,則實數的值為()A. B. C. D.2.已知函數的圖象與直線的相鄰交點間的距離為,若定義,則函數,在區間內的圖象是()A. B.C. D.3.某校在高一年級進行了數學競賽(總分100分),下表為高一·一班40名同學的數學競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學生的數學競賽成績,運行相應的程序,輸出,的值,則()A.6 B.8 C.10 D.124.設命題函數在上遞增,命題在中,,下列為真命題的是()A. B. C. D.5.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.96.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.7.已知函數(,是常數,其中且)的大致圖象如圖所示,下列關于,的表述正確的是()A., B.,C., D.,8.的展開式中,含項的系數為()A. B. C. D.9.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.10.復數().A. B. C. D.11.已知函數,若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)12.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則函數的極大值為___________.14.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.15.已知全集,集合則_____.16.正四面體的各個點在平面同側,各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)解關于的不等式;(2)若函數的圖象恒在直線的上方,求實數的取值范圍18.(12分)已知△ABC的內角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.19.(12分)在平面直角坐標系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準線于D,E兩點.(1)求拋物線C的方程;(2)若F在線段上,P是的中點,證明:.20.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.21.(12分)為提供市民的健身素質,某市把四個籃球館全部轉為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數如圖,用分層抽樣的方法從四場館的使用場數中依次抽取共25場,在中隨機取兩數,求這兩數和的分布列和數學期望;(2)設四個籃球館一個月內各館使用次數之和為,其相應維修費用為元,根據統計,得到如下表的數據:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據①的結論,試估計這四個籃球館月惠值最大時的值參考數據和公式:,22.(10分)已知,函數的最小值為1.(1)證明:.(2)若恒成立,求實數的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
通過分析函數與的圖象,得到兩函數必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數與的圖象,因為時,恒成立,于是兩函數必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數的圖象的綜合應用和函數的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.2.A【解析】
由題知,利用求出,再根據題給定義,化簡求出的解析式,結合正弦函數和正切函數圖象判斷,即可得出答案.【詳解】根據題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數和正切函數圖象可知正確.故選:A.【點睛】本題考查三角函數中正切函數的周期和圖象,以及正弦函數的圖象,解題關鍵是對新定義的理解.3.D【解析】
根據程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數,的取值為成績大于等于60且小于90的人數,故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統計量等基礎知識;考查運算求解能力,邏輯推理能力和數學應用意識.4.C【解析】
命題:函數在上單調遞減,即可判斷出真假.命題:在中,利用余弦函數單調性判斷出真假.【詳解】解:命題:函數,所以,當時,,即函數在上單調遞減,因此是假命題.命題:在中,在上單調遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點睛】本題考查了函數的單調性、正弦定理、三角形邊角大小關系、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.5.B【解析】
根據題意,分析可得,由余弦定理求得的值,由可得結果.【詳解】根據題意,,則在中,又,則則則則故選:B【點睛】此題考查余弦定理和向量的數量積運算,掌握基本概念和公式即可解決,屬于簡單題目.6.D【解析】
根據為等腰三角形,可求出點P的坐標,又由的斜率為可得出關系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于中檔題.7.D【解析】
根據指數函數的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設中提供的圖像可以看出,故得,故選:D.【點睛】本題考查圖象的平移以及指數函數的圖象和特征,本題屬于基礎題.8.B【解析】
在二項展開式的通項公式中,令的冪指數等于,求出的值,即可求得含項的系數.【詳解】的展開式通項為,令,得,可得含項的系數為.故選:B.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.9.D【解析】
根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.10.A【解析】試題分析:,故選A.【考點】復數運算【名師點睛】復數代數形式的四則運算的法則是進行復數運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數化.11.C【解析】
利用導數求得在上遞增,結合與圖象,判斷出的大小關系,由此比較出的大小關系.【詳解】因為,所以在上單調遞增;在同一坐標系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導數研究函數的單調性,考查利用函數的單調性比較大小,考查數形結合的數學思想方法,屬于中檔題.12.B【解析】
構造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據題意恰當的選取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關系,一般利用長方體為載體進行分析.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
對函數求導,通過賦值,求得,再對函數單調性進行分析,求得極大值.【詳解】,故解得,,令,解得函數在單調遞增,在單調遞減,故的極大值為故答案為:.【點睛】本題考查函數極值的求解,難點是要通過賦值,求出未知量.14.【解析】
由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為【點睛】本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.15.【解析】
根據補集的定義求解即可.【詳解】解:.故答案為.【點睛】本題主要考查了補集的運算,屬于基礎題.16.【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,根據題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉化化歸的思想和空間想象,運算求解的能力,屬于難題,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)零點分段法分,,三種情況討論即可;(2)只需找到的最小值即可.【詳解】(1)由.若時,,解得;若時,,解得;若時,,解得;故不等式的解集為.(2)由,有,得,故實數的取值范圍為.【點睛】本題考查絕對值不等式的解法以及不等式恒成立問題,考查學生的運算能力,是一道基礎題.18.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根據條件由正弦定理得,又c=2a,所以,由余弦定理算出,進而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點睛】本題主要考查了正余弦定理的應用,運用二倍角公式和兩角和的正弦公式求值,考查了學生的運算求解能力.19.(1);(2)見解析【解析】
(1)根據拋物線的焦點在直線上,可求得的值,從而求得拋物線的方程;(2)法一:設直線,的方程分別為和且,,,可得,,,的坐標,進而可得直線的方程,根據在直線上,可得,再分別求得,,即可得證;法二:設,,則,根據直線的斜率不為0,設出直線的方程為,聯立直線和拋物線的方程,結合韋達定理,分別求出,,化簡,即可得證.【詳解】(1)拋物線C的焦點坐標為,且該點在直線上,所以,解得,故所求拋物線C的方程為(2)法一:由點F在線段上,可設直線,的方程分別為和且,,,則,,,.∴直線的方程為,即.又點在線段上,∴.∵P是的中點,∴∴,.由于,不重合,所以法二:設,,則當直線的斜率為0時,不符合題意,故可設直線的方程為聯立直線和拋物線的方程,得又,為該方程兩根,所以,,,.,由于,不重合,所以【點睛】本題考查拋物線的標準方程,考查拋物線的定義,考查直線與拋物線的位置關系,屬于中檔題.20.(Ⅰ)(Ⅱ)8【解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據同角的三角函數的關系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.21.(1)見解析,12.5(2)①②20【解析】
(1)運用分層抽樣,結合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進而可求與的回歸直線方程;②求出,再對函數求導,結合單調性,可估計這四個籃球館月惠值最大時的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數之和所有可能取值是:10,12,13,1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務顧問投資分析與風險評估合同
- 礦產資源勘查現場調研委托協議
- 知名餐飲品牌區域代理權授予合同
- 水文地質與環境測量合同
- 網絡安全保密及限制競爭合作協議
- 電子產品展參展商參展資格認定合同
- 餐飲行業食品安全監管合同
- 2026屆新高考語文熱點復習:挑戰一眼挑出病句錯誤點-典型病例及對應修改
- 部編版八年級語文下冊期末復習資料
- 2026屆新高考英語熱點突破復習應用文寫作
- 安全法生產試題及答案
- 購買私人地皮合同范本
- 2025年04月廣東惠州市惠陽區教育局選調下屬事業單位工作人員15人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 短期護工合同協議書
- 安徽航瑞國際滾裝運輸有限公司招聘筆試題庫2025
- T/CWPIA 2-2020戶外重組竹地板鋪裝技術規范
- 2025年英語四級考試模擬試卷及答案
- 護理倫理實踐路徑分析
- 養老消防安全試題及答案
- 2025年下半年北京大興區地震局招聘臨時輔助用工擬聘用人員易考易錯模擬試題(共500題)試卷后附參考答案
- 2025新版保安員考試試題附含答案
評論
0/150
提交評論