2023年山東省濟寧第二中學高考仿真卷數學試題(含答案解析)_第1頁
2023年山東省濟寧第二中學高考仿真卷數學試題(含答案解析)_第2頁
2023年山東省濟寧第二中學高考仿真卷數學試題(含答案解析)_第3頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.()A. B. C.1 D.2.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,則容器里水面的最大高度為()A. B. C. D.3.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則()A. B. C. D.4.一場考試需要2小時,在這場考試中鐘表的時針轉過的弧度數為()A. B. C. D.5.已知集合,,,則的子集共有()A.個 B.個 C.個 D.個6.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.7.本次模擬考試結束后,班級要排一張語文、數學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種8.設全集為R,集合,,則A. B. C. D.9.根據黨中央關于“精準”脫貧的要求,我市某農業經濟部門派四位專家對三個縣區進行調研,每個縣區至少派一位專家,則甲,乙兩位專家派遣至同一縣區的概率為()A. B. C. D.10.函數的單調遞增區間是()A. B. C. D.11.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.12.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則二、填空題:本題共4小題,每小題5分,共20分。13.如圖,機器人亮亮沿著單位網格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.14.設實數,滿足,則的最大值是______.15.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________16.的展開式中,x5的系數是_________.(用數字填寫答案)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.18.(12分)已知.(1)解關于x的不等式:;(2)若的最小值為M,且,求證:.19.(12分)已知橢圓的左焦點坐標為,,分別是橢圓的左,右頂點,是橢圓上異于,的一點,且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點作兩條直線,分別交橢圓于,兩點(異于點).當直線,的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標;若不是,請說明理.20.(12分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.21.(12分)如圖:在中,,,.(1)求角;(2)設為的中點,求中線的長.22.(10分)已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)寫出曲線的極坐標方程;(2)點是曲線上的一點,試判斷點與曲線的位置關系.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】

利用復數的乘方和除法法則將復數化為一般形式,結合復數的模長公式可求得結果.【題目詳解】,,因此,.故選:A.【答案點睛】本題考查復數模長的計算,同時也考查了復數的乘方和除法法則的應用,考查計算能力,屬于基礎題.2.B【答案解析】

根據已知可知水面的最大高度為正方體面對角線長的一半,由此得到結論.【題目詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【答案點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題.3.A【答案解析】

由已知可得,根據二倍角公式即可求解.【題目詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則,.故選:A.【答案點睛】本題考查三角函數定義、二倍角公式,考查計算求解能力,屬于基礎題.4.B【答案解析】

因為時針經過2小時相當于轉了一圈的,且按順時針轉所形成的角為負角,綜合以上即可得到本題答案.【題目詳解】因為時針旋轉一周為12小時,轉過的角度為,按順時針轉所形成的角為負角,所以經過2小時,時針所轉過的弧度數為.故選:B【答案點睛】本題主要考查正負角的定義以及弧度制,屬于基礎題.5.B【答案解析】

根據集合中的元素,可得集合,然后根據交集的概念,可得,最后根據子集的概念,利用計算,可得結果.【題目詳解】由題可知:,當時,當時,當時,當時,所以集合則所以的子集共有故選:B【答案點睛】本題考查集合的運算以及集合子集個數的計算,當集合中有元素時,集合子集的個數為,真子集個數為,非空子集為,非空真子集為,屬基礎題.6.D【答案解析】

結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【題目詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【答案點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.7.B【答案解析】

利用分步計數原理結合排列求解即可【題目詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【答案點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題8.B【答案解析】分析:由題意首先求得,然后進行交集運算即可求得最終結果.詳解:由題意可得:,結合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉化能力和計算求解能力.9.A【答案解析】

每個縣區至少派一位專家,基本事件總數,甲,乙兩位專家派遣至同一縣區包含的基本事件個數,由此能求出甲,乙兩位專家派遣至同一縣區的概率.【題目詳解】派四位專家對三個縣區進行調研,每個縣區至少派一位專家基本事件總數:甲,乙兩位專家派遣至同一縣區包含的基本事件個數:甲,乙兩位專家派遣至同一縣區的概率為:本題正確選項:【答案點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.10.D【答案解析】

利用輔助角公式,化簡函數的解析式,再根據正弦函數的單調性,并采用整體法,可得結果.【題目詳解】因為,由,解得,即函數的增區間為,所以當時,增區間的一個子集為.故選D.【答案點睛】本題考查了輔助角公式,考查正弦型函數的單調遞增區間,重點在于把握正弦函數的單調性,同時對于整體法的應用,使問題化繁為簡,難度較易.11.D【答案解析】

首先將轉化為,只需求出的取值范圍即可,而表示可行域內的點與圓心距離,數形結合即可得到答案.【題目詳解】作出可行域如圖所示設圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【答案點睛】本題考查與線性規劃相關的取值范圍問題,涉及到向量的線性運算、數量積、點到直線的距離等知識,考查學生轉化與劃歸的思想,是一道中檔題.12.B【答案解析】

根據空間中線線、線面位置關系,逐項判斷即可得出結果.【題目詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【答案點睛】本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于常考題型.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應的走法種數,然后利用分步乘法計數原理可得出結果.【題目詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;③從到,由①可知有種走法.由分步乘法計數原理可知,共有種不同的走法.故答案為:.【答案點睛】本題考查格點問題的處理,考查分步乘法計數原理和組合計數原理的應用,屬于中等題.14.1【答案解析】

根據目標函數的解析式形式,分析目標函數的幾何意義,然后判斷求出目標函數取得最優解的點的坐標,即可求解.【題目詳解】作出實數,滿足表示的平面區域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時最大為1,故答案為:1.【答案點睛】本題主要考查線性規劃知識的運用,考查學生的計算能力,考查數形結合的數學思想.15.【答案解析】

根據題意畫出圖形,設,利用三角形相似求得的值,代入三角形的面積公式,即可求解.【題目詳解】如圖所示,設,由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【答案點睛】本題主要考查了直線與圓的位置關系的應用,以及三角形相似的應用,著重考查了數形結合思想,以及推理與運算能力,屬于基礎題.16.-189【答案解析】由二項式定理得,令r=5得x5的系數是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【答案解析】

(1)利用線段長度得到與間的垂直關系,再根據線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計算出結果.【題目詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標原點,分別以、、為軸、軸、軸建立空間直角坐標系,則,,,,,,,∵,∴,設是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為【答案點睛】本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.18.(1);(2)證明見解析.【答案解析】

(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數,求得最小值,再利用均值不等式即可證明.【題目詳解】(1)當時,等價于,該不等式恒成立,當時,等價于,該不等式解集為,當時,等價于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因為,,,所以,,,所以,當且僅當時等號成立.【答案點睛】本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.19.(1)(2)直線過定點【答案解析】

(1),再由,解方程組即可;(2)設,,由,得,由直線MN的方程與橢圓方程聯立得到根與系數的關系,代入計算即可.【題目詳解】(1)由題意知:,又,且解得,,∴橢圓方程為,(2)當直線的斜率存在時,設其方程為,設,,由,得.則,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直線過點當直線的斜率不存在時,設直線的方程為,,,其中,∴,由,得,所以∴當直線的斜率不存在時,直線也過定點綜上所述,直線過定點.【答案點睛】本題考查求橢圓的標準方程以及直線與橢圓位置關系中的定點問題,在處理直線與橢圓的位置關系的大題時,一般要利用根與系數的關系來求解,本題是一道中檔題.20.(1)見解析(2)【答案解析】

(1)利用正弦定理求得,由此得到,結合證得平面,由此證得.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值,再轉化為正弦值.【題目詳解】(1)在中,由正弦定理可得:,,底面,平面,;(2)以為坐標原點建立如圖所示的空間直角坐標系,,設平面的法向量為,由可得:,令,則,設平面的法向量為,由可得:,令,則,設二面角的平面角為,由圖可知為鈍角,則,,故二面角的正弦值為.【答案點睛】本小題主要考查線線垂直的證明,考查空間向量法求二面角,考查空間想象能力和邏輯推理能力,屬于中檔題.21.(1);(2)【答案解析】

(1)通過求出的值,利用正弦定理求出即可得角;(2)根據求出的值,由正弦定理求出邊,最后在中由余弦定理即可得結果.【題目詳解】(1)∵,∴.由正弦定理,即.得,∵,∴為鈍角,為銳角,故.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論