




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.甲、乙兩人約好步行沿同一路線同一方向在某景點集合,已知甲乙二人相距660米,二人同時出發,走了24分鐘時,由于乙距離景點近,先到達等候甲,甲共走了30分鐘也到達了景點與乙相遇.在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程(米)與甲出發的時間(分鐘)之間的關系如圖所示,下列說法錯誤的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距離景點2100米 D.乙距離景點420米2.如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC3.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價降價20%,現售價為a元,則原售價為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.454.已知關于x的方程恰有一個實根,則滿足條件的實數a的值的個數為()A.1 B.2 C.3 D.45.如圖所示:有理數在數軸上的對應點,則下列式子中錯誤的是()A. B. C. D.6.扇形的半徑為30cm,圓心角為120°,用它做成一個圓錐的側面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm7.下列四個實數中是無理數的是()A.2.5B.1038.下面四個幾何體中,左視圖是四邊形的幾何體共有()A.1個 B.2個 C.3個 D.4個9.不等式4-2x>0的解集在數軸上表示為()A. B. C. D.10.已知圖中所有的小正方形都全等,若在右圖中再添加一個全等的小正方形得到新的圖形,使新圖形是中心對稱圖形,則正確的添加方案是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.菱形的兩條對角線長分別是方程的兩實根,則菱形的面積為______.12.如圖,在網格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.13.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.14.一元二次方程x(x﹣2)=x﹣2的根是_____.15.如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結果保留根號)16.化簡的結果是_______________.三、解答題(共8題,共72分)17.(8分)某商場,為了吸引顧客,在“白色情人節”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內裝有2個紅球和2個白球,除顏色外其它都相同,搖獎者必須從搖獎機內一次連續搖出兩個球,根據球的顏色(如表)決定送禮金券的多少.球兩紅一紅一白兩白禮金券(元)182418(1)請你用列表法(或畫樹狀圖法)求一次連續搖出一紅一白兩球的概率.(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.18.(8分)如圖1,在平行四邊形ABCD中,對角線AC與BD相交于點O,經過點O的直線與邊AB相交于點E,與邊CD相交于點F.(1)求證:OE=OF;(2)如圖2,連接DE,BF,當DE⊥AB時,在不添加其他輔助線的情況下,直接寫出腰長等于BD的所有的等腰三角形.19.(8分)如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.20.(8分)如圖(1),AB=CD,AD=BC,O為AC中點,過O點的直線分別與AD、BC相交于點M、N,那么∠1與∠2有什么關系?請說明理由;若過O點的直線旋轉至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關系成立嗎?請說明理由.21.(8分)春節期間,收發微信紅包已經成為各類人群進行交流聯系、增強感情的一部分,小王在2017年春節共收到紅包400元,2019年春節共收到紅包484元,求小王在這兩年春節收到紅包的年平均增長率.22.(10分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側,聯結,并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數關系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.23.(12分)2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經貿合作協議,某廠準備生產甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區.已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.(1)甲種商品與乙種商品的銷售單價各多少元?(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?24.在矩形中,點在上,,⊥,垂足為.求證.若,且,求.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據圖中信息以及路程、速度、時間之間的關系一一判斷即可.【詳解】甲的速度==70米/分,故A正確,不符合題意;設乙的速度為x米/分.則有,660+24x-70×24=420,解得x=60,故B正確,本選項不符合題意,70×30=2100,故選項C正確,不符合題意,24×60=1440米,乙距離景點1440米,故D錯誤,故選D.【點睛】本題考查一次函數的應用,行程問題等知識,解題的關鍵是讀懂圖象信息,靈活運用所學知識解決問題.2、D【解析】
由全等三角形的判定方法ASA證出△ABD≌△ACD,得出A正確;由全等三角形的判定方法AAS證出△ABD≌△ACD,得出B正確;由全等三角形的判定方法SAS證出△ABD≌△ACD,得出C正確.由全等三角形的判定方法得出D不正確;【詳解】A正確;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正確;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正確;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正確,由這些條件不能判定三角形全等;故選:D.【點睛】本題考查了全等三角形的判定方法;三角形全等的判定是中考的熱點,熟練掌握全等三角形的判定方法是解決問題的關鍵.3、C【解析】
根據題意列出代數式,化簡即可得到結果.【詳解】根據題意得:a÷(1?20%)=a÷45=5故答案選:C.【點睛】本題考查的知識點是列代數式,解題的關鍵是熟練的掌握列代數式.4、C【解析】
先將原方程變形,轉化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關鍵.5、C【解析】
從數軸上可以看出a、b都是負數,且a<b,由此逐項分析得出結論即可.【詳解】由數軸可知:a<b<0,A、兩數相乘,同號得正,ab>0是正確的;
B、同號相加,取相同的符號,a+b<0是正確的;
C、a<b<0,,故選項是錯誤的;
D、a-b=a+(-b)取a的符號,a-b<0是正確的.
故選:C.【點睛】此題考查有理數的混合運算,數軸,解題關鍵在于結合數軸進行解答.6、A【解析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點:圓錐的計算.7、C【解析】本題主要考查了無理數的定義.根據無理數的定義:無限不循環小數是無理數即可求解.解:A、2.5是有理數,故選項錯誤;B、103C、π是無理數,故選項正確;D、1.414是有理數,故選項錯誤.故選C.8、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因為圓柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個.故選B.9、D【解析】
根據解一元一次不等式基本步驟:移項、系數化為1可得.【詳解】移項,得:-2x>-4,
系數化為1,得:x<2,
故選D.【點睛】考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.10、B【解析】
觀察圖形,利用中心對稱圖形的性質解答即可.【詳解】選項A,新圖形不是中心對稱圖形,故此選項錯誤;選項B,新圖形是中心對稱圖形,故此選項正確;選項C,新圖形不是中心對稱圖形,故此選項錯誤;選項D,新圖形不是中心對稱圖形,故此選項錯誤;故選B.【點睛】本題考查了中心對稱圖形的概念,熟知中心對稱圖形的概念是解決問題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
解:x2﹣14x+41=0,則有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面積為:(6×1)÷2=2.菱形的面積為:2.故答案為2.點睛:本題考查菱形的性質.菱形的對角線互相垂直,以及對角線互相垂直的四邊形的面積的特點和根與系數的關系.12、【解析】
如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.13、3【解析】
以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據三角形三邊關系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,
,
∵△ACD,△ABE是等邊三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若點E,點B,點C不共線時,EC<BC+BE;
若點E,點B,點C共線時,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值為3,即BD的最大值為3.
故答案是:3【點睛】考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.14、1或1【解析】
移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可得答案.【詳解】x(x﹣1)=x﹣1,x(x﹣1)﹣(x﹣1)=0,(x﹣1)(x﹣1)=0,x﹣1=0,x﹣1=0,x1=1,x1=1,故答案為:1或1.【點睛】本題考查了解一元二次方程的應用,能把一元二次方程轉化成一元一次方程是解此題的關鍵.15、40【解析】
利用等腰直角三角形的性質得出AB=AD,再利用銳角三角函數關系即可得出答案.【詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【點睛】此題主要考查了解直角三角形的應用,正確得出tan∠CDA=tan30°=是解題關鍵.16、【解析】
先將分式進行通分,即可進行運算.【詳解】=-=【點睛】此題主要考查分式的加減,解題的關鍵是先將它們通分.三、解答題(共8題,共72分)17、(1)見解析(2)選擇搖獎【解析】試題分析:(1)畫樹狀圖列出所有等可能結果,再讓所求的情況數除以總情況數即為所求的概率;
(2)算出相應的平均收益,比較大小即可.試題解析:(1)樹狀圖為:∴一共有6種情況,搖出一紅一白的情況共有4種,∴搖出一紅一白的概率=;(2)∵兩紅的概率P=,兩白的概率P=,一紅一白的概率P=,∴搖獎的平均收益是:×18+×24+×18=22,∵22>20,∴選擇搖獎.【點睛】主要考查的是概率的計算,畫樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.18、(1)證明見解析;(2)△DOF,△FOB,△EOB,△DOE.【解析】
(1)由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,則可證得△AOE≌△COF(ASA),繼而證得OE=OF;
(2)證明四邊形DEBF是矩形,由矩形的性質和等腰三角形的性質即可得出結論.【詳解】(1)∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥CD,OB=OD,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF;(2)∵OE=OF,OB=OD,∴四邊形DEBF是平行四邊形,∵DE⊥AB,∴∠DEB=90°,∴四邊形DEBF是矩形,∴BD=EF,∴OD=OB=OE=OF=BD,∴腰長等于BD的所有的等腰三角形為△DOF,△FOB,△EOB,△DOE.【點睛】本題考查了等腰三角形的性質與平行四邊形的性質,解題的關鍵是熟練的掌握等腰三角形的性質與平行四邊形的性質.19、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據OE的解析式表示點G的坐標,表示PG的長,根據面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P作PG∥y軸,交OE于點G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當m=時,S有最大值是;(3)如圖3,過P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標為(,)或(,);如圖4,過P作MN⊥x軸于N,過F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標為(,)或(,);綜上所述,點P的坐標是:(,)或(,)或(,)或(,).點睛:本題屬于二次函數綜合題,主要考查了二次函數的綜合應用,相似三角形的判定與性質以及解一元二次方程的方法,解第(2)問時需要運用配方法,解第(3)問時需要運用分類討論思想和方程的思想解決問題.20、詳見解析.【解析】
(1)根據全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性質得∠DAC=∠BCA,可證AD∥BC,根據平行線的性質得出∠1=∠1;(1)(3)和(1)的證法完全一樣.先證△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,從而∠1=∠1.【詳解】證明:∠1與∠1相等.在△ADC與△CBA中,,∴△ADC≌△CBA.(SSS)∴∠DAC=∠BCA.∴DA∥BC.∴∠1=∠1.②③圖形同理可證,△ADC≌△CBA得到∠DAC=∠BCA,則DA∥BC,∠1=∠1.21、小王在這兩年春節收到的年平均增長率是10【解析】
增長后的量=增長前的量×(1+增長率),2018年收到微信紅包金額400(1+x)元,在2018年的基礎上再增長x,就是2019年收到微信紅包金額400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【詳解】解:設小王在這兩年春節收到的紅包的年平均增長率是x.依題意得:400解得x1答:小王在這兩年春節收到的年平均增長率是10【點睛】本題考查了一元二次方程的應用.對于增長率問題,增長前的量×(1+年平均增長率)年數=增長后的量.22、(1)④⑤;(2);(3)或.【解析】
(1)作于M,交于N,如圖,利用三角函數的定義得到,設,則,利用勾股定理得,解得,即,,設正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y與x的關系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在點F點右側時,則,所以,當點P在點F點左側時,則,所以,然后分別解方程即可得到正方形的邊長.【詳解】(1)如圖,作于M,交于N,在中,∵,設,則,∵,∴,解得,∴,,設正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 女兒生日美容院活動方案
- 婚戀交友party活動方案
- 娃娃團建活動方案
- 職工壓力管理教育方案及具體措施
- 威海民俗團建活動方案
- 婦聯下鄉活動方案
- 孕期瑜伽直播活動方案
- 女工部創新活動方案
- 奇幻星空活動方案
- 學校雙亮雙述活動方案
- 三級醫院評審標準(2025年版)
- 安全文明標準化施工方案
- 云南省昆明市2023-2024學年高二下學期期末質量檢測數學試題(解析版)
- 單體藥店GSP質量管理制度
- (2025)“安全生產月”安全生產知識競賽試題庫(答案)
- 材料力學知到智慧樹期末考試答案題庫2025年遼寧工程技術大學
- 農業托管經營協議書
- 腫瘤內科病案質量管理
- 醫療器械財務部門的職責與作用
- 2025年重癥醫學科ICU護理標準化建設計劃
- 建筑合同變更補充協議
評論
0/150
提交評論