




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
LecturePresentationSoftware
toaccompany
InvestmentAnalysisand
PortfolioManagement
SeventhEdition
by
FrankK.Reilly&KeithC.BrownChapter9LecturePresentationSoftware1Chapter9–MultifactorModelsofRiskandReturnQuestionstobeanswered:Whatisthearbitragepricingtheory(APT)andwhatareitssimilaritiesanddifferencesrelativetotheCAPM?WhatarethemajorassumptionsnotrequiredbytheAPTmodelcomparedtotheCAPM?HowdoyoutesttheAPTbyexamininganomaliesfoundwiththeCAPM?Chapter9–MultifactorModels2Chapter9-MultifactorModelsofRiskandReturnWhataretheempiricaltestresultsrelatedtotheAPT?WhydosomeauthorscontendthattheAPTmodelisuntestable?WhataretheconcernsrelatedtothemultiplefactorsoftheAPTmodel?Chapter9-MultifactorModels3Chapter9-MultifactorModelsofRiskandReturnWhataremultifactormodelsandhowarerelatedtotheAPT?Whatarethestepsnecessaryindevelopingausablemultifactormodel?Whatarethemultifactormodelsinpractice?Howisriskestimatedinamultifactorsetting?Chapter9-MultifactorModels4ArbitragePricingTheory(APT)CAPMiscriticizedbecauseofthedifficultiesinselectingaproxyforthemarketportfolioasabenchmarkAnalternativepricingtheorywithfewerassumptionswasdeveloped:ArbitragePricingTheoryArbitragePricingTheory(APT)5ArbitragePricingTheory-APTThreemajorassumptions: 1.Capitalmarketsareperfectlycompetitive 2.Investorsalwaysprefermorewealthtolesswealthwithcertainty 3.ThestochasticprocessgeneratingassetreturnscanbeexpressedasalinearfunctionofasetofKfactorsorindexesArbitragePricingTheory-APT6AssumptionsofCAPM
ThatWereNotRequiredbyAPTAPTdoesnotassumeAmarketportfoliothatcontainsallriskyassets,andismean-varianceefficientNormallydistributedsecurityreturnsQuadraticutilityfunction
AssumptionsofCAPM
ThatWere7ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiodRiArbitragePricingTheory(APT)8ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforassetiRiEiArbitragePricingTheory(APT)9ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactorRiEibikArbitragePricingTheory(APT)10ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassetsRiEibikArbitragePricingTheory(APT)11ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassets=auniqueeffectonasseti’sreturnthat,byassumption,iscompletelydiversifiableinlargeportfoliosandhasameanofzeroRiEibikArbitragePricingTheory(APT)12ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassets=auniqueeffectonasseti’sreturnthat,byassumption,iscompletelydiversifiableinlargeportfoliosandhasameanofzero=numberofassetsRiEibikNArbitragePricingTheory(APT)13ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:ArbitragePricingTheory(APT)14ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationArbitragePricingTheory(APT)15ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPArbitragePricingTheory(APT)16ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsArbitragePricingTheory(APT)17ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesArbitragePricingTheory(APT)18ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesAndmanymore….ArbitragePricingTheory(APT)19ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesAndmanymore….ContrastwithCAPMinsistencethatonlybetaisrelevantArbitragePricingTheory(APT)20ArbitragePricingTheory(APT)BikdeterminehoweachassetreactstothiscommonfactorEachassetmaybeaffectedbygrowthinGNP,buttheeffectswilldifferInapplicationofthetheory,thefactorsarenotidentifiedSimilartotheCAPM,theuniqueeffectsareindependentandwillbediversifiedawayinalargeportfolioArbitragePricingTheory(APT)21ArbitragePricingTheory(APT)APTassumesthat,inequilibrium,thereturnonazero-investment,zero-systematic-riskportfolioiszerowhentheuniqueeffectsarediversifiedawayTheexpectedreturnonanyasseti(Ei)canbeexpressedas:ArbitragePricingTheory(APT)22ArbitragePricingTheory(APT)where:=theexpectedreturnonanassetwithzerosystematicriskwhere=theriskpremiumrelatedtoeachofthecommonfactors-forexampletheriskpremiumrelatedtointerestrateriskbi=thepricingrelationshipbetweentheriskpremiumandasseti-thatishowresponsiveassetiistothiscommonfactorKArbitragePricingTheory(APT)23ExampleofTwoStocks
andaTwo-FactorModel=changesintherateofinflation.Theriskpremiumrelatedtothisfactoris1percentforevery1percentchangeintherate=percentgrowthinrealGNP.Theaverageriskpremiumrelatedtothisfactoris2percentforevery1percentchangeintherate=therateofreturnonazero-systematic-riskasset(zerobeta:boj=0)is3percentExampleofTwoStocks
andaT24ExampleofTwoStocks
andaTwo-FactorModel=theresponseofassetXtochangesintherateofinflationis0.50=theresponseofassetYtochangesintherateofinflationis2.00=theresponseofassetXtochangesinthegrowthrateofrealGNPis1.50=theresponseofassetYtochangesinthegrowthrateofrealGNPis1.75ExampleofTwoStocks
andaT25ExampleofTwoStocks
andaTwo-FactorModel
=.03+(.01)bi1+(.02)bi2Ex=.03+(.01)(0.50)+(.02)(1.50)=.065=6.5%
Ey=.03+(.01)(2.00)+(.02)(1.75)=.085=8.5%ExampleofTwoStocks
andaT26Roll-RossStudyThemethodologyusedinthestudyisasfollows:Estimatetheexpectedreturnsandthefactorcoefficientsfromtime-seriesdataonindividualassetreturnsUsetheseestimatestotestthebasiccross-sectionalpricingconclusionimpliedbytheAPTTheauthorsconcludedthattheevidencegenerallysupportedtheAPT,butacknowledgedthattheirtestswerenotconclusiveRoll-RossStudyThemethodology27Extensionsofthe
Roll-RossStudyCho,Elton,andGruberexaminedthenumberoffactorsinthereturn-generatingprocessthatwerepricedDhrymes,Friend,andGultekin(DFG)reexaminedtechniquesandtheirlimitationsandfoundthenumberoffactorsvarieswiththesizeoftheportfolioExtensionsofthe
Roll-RossS28TheAPTandAnomaliesSmall-firmeffectReinganum-resultsinconsistentwiththeAPTChen-supportedtheAPTmodeloverCAPMJanuaryanomalyGultekin-APTnotbetterthanCAPMBurmeisterandMcElroy-effectnotcapturedbymodel,butstillrejectedCAPMinfavorofAPTTheAPTandAnomaliesSmall-fir29Shanken’sChallengetoTestabilityoftheAPTIfreturnsarenotexplainedbyamodel,itisnotconsideredrejectionofamodel;howeverifthefactorsdoexplainreturns,itisconsideredsupportAPThasnoadvantagebecausethefactorsneednotbeobservable,soequivalentsetsmayconformtodifferentfactorstructuresEmpiricalformulationoftheAPTmayyielddifferentimplicationsregardingtheexpectedreturnsforagivensetofsecuritiesThus,thetheorycannotexplaindifferentialreturnsbetweensecuritiesbecauseitcannotidentifytherelevantfactorstructurethatexplainsthedifferentialreturnsShanken’sChallengetoTestabi30AlternativeTestingTechniquesJobsonproposesAPTtestingwithamultivariatelinearregressionmodelBrownandWeinsteinproposeusingabilinearparadigmOthersproposenewmethodologiesAlternativeTestingTechniques31MultifactorModelsandRiskEstimation Inamultifactormodel,theinvestorchoosestheexactnumberandidentityofriskfactorsMultifactorModelsandRiskEs32MultifactorModelsandRiskEstimationMultifactorModelsinPracticeMacroeconomic-BasedRiskFactorModelsMultifactorModelsandRiskEs33MultifactorModelsandRiskEstimationMultifactorModelsinPracticeMacroeconomic-BasedRiskFactorModelsMicroeconomic-BasedRiskFactorModelsMultifactorModelsandRiskEs34MultifactorModelsandRiskEstimationMultifactorModelsinPracticeMacroeconomic-BasedRiskFactorModelsMicroeconomic-BasedRiskFactorModelsExtensionsofCharacteristic-BasedRiskFactorModelsMultifactorModelsandRiskEs35EstimatingRiskinaMultifactorSetting:ExamplesEstimatingExpectedReturnsforIndividualStocksEstimatingRiskinaMultifact36EstimatingRiskinaMultifactorSetting:ExamplesEstimatingExpectedReturnsforIndividualStocksComparingMutualFundRiskExposuresEstimatingRiskinaMultifact37TheInternet
InvestmentsOnlineTheInternet
InvestmentsOnlin38Futuretopics
Chapter10
AnalysisofFinancialStatementsFuturetopics
Chapter10Analy39LecturePresentationSoftware
toaccompany
InvestmentAnalysisand
PortfolioManagement
SeventhEdition
by
FrankK.Reilly&KeithC.BrownChapter9LecturePresentationSoftware40Chapter9–MultifactorModelsofRiskandReturnQuestionstobeanswered:Whatisthearbitragepricingtheory(APT)andwhatareitssimilaritiesanddifferencesrelativetotheCAPM?WhatarethemajorassumptionsnotrequiredbytheAPTmodelcomparedtotheCAPM?HowdoyoutesttheAPTbyexamininganomaliesfoundwiththeCAPM?Chapter9–MultifactorModels41Chapter9-MultifactorModelsofRiskandReturnWhataretheempiricaltestresultsrelatedtotheAPT?WhydosomeauthorscontendthattheAPTmodelisuntestable?WhataretheconcernsrelatedtothemultiplefactorsoftheAPTmodel?Chapter9-MultifactorModels42Chapter9-MultifactorModelsofRiskandReturnWhataremultifactormodelsandhowarerelatedtotheAPT?Whatarethestepsnecessaryindevelopingausablemultifactormodel?Whatarethemultifactormodelsinpractice?Howisriskestimatedinamultifactorsetting?Chapter9-MultifactorModels43ArbitragePricingTheory(APT)CAPMiscriticizedbecauseofthedifficultiesinselectingaproxyforthemarketportfolioasabenchmarkAnalternativepricingtheorywithfewerassumptionswasdeveloped:ArbitragePricingTheoryArbitragePricingTheory(APT)44ArbitragePricingTheory-APTThreemajorassumptions: 1.Capitalmarketsareperfectlycompetitive 2.Investorsalwaysprefermorewealthtolesswealthwithcertainty 3.ThestochasticprocessgeneratingassetreturnscanbeexpressedasalinearfunctionofasetofKfactorsorindexesArbitragePricingTheory-APT45AssumptionsofCAPM
ThatWereNotRequiredbyAPTAPTdoesnotassumeAmarketportfoliothatcontainsallriskyassets,andismean-varianceefficientNormallydistributedsecurityreturnsQuadraticutilityfunction
AssumptionsofCAPM
ThatWere46ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiodRiArbitragePricingTheory(APT)47ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforassetiRiEiArbitragePricingTheory(APT)48ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactorRiEibikArbitragePricingTheory(APT)49ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassetsRiEibikArbitragePricingTheory(APT)50ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassets=auniqueeffectonasseti’sreturnthat,byassumption,iscompletelydiversifiableinlargeportfoliosandhasameanofzeroRiEibikArbitragePricingTheory(APT)51ArbitragePricingTheory(APT)Fori=1toNwhere:=returnonassetiduringaspecifiedtimeperiod=expectedreturnforasseti=reactioninasseti’sreturnstomovementsinacommonfactor=acommonfactorwithazeromeanthatinfluencesthereturnsonallassets=auniqueeffectonasseti’sreturnthat,byassumption,iscompletelydiversifiableinlargeportfoliosandhasameanofzero=numberofassetsRiEibikNArbitragePricingTheory(APT)52ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:ArbitragePricingTheory(APT)53ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationArbitragePricingTheory(APT)54ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPArbitragePricingTheory(APT)55ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsArbitragePricingTheory(APT)56ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesArbitragePricingTheory(APT)57ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesAndmanymore….ArbitragePricingTheory(APT)58ArbitragePricingTheory(APT)Multiplefactorsexpectedtohaveanimpactonallassets:InflationGrowthinGNPMajorpoliticalupheavalsChangesininterestratesAndmanymore….ContrastwithCAPMinsistencethatonlybetaisrelevantArbitragePricingTheory(APT)59ArbitragePricingTheory(APT)BikdeterminehoweachassetreactstothiscommonfactorEachassetmaybeaffectedbygrowthinGNP,buttheeffectswilldifferInapplicationofthetheory,thefactorsarenotidentifiedSimilartotheCAPM,theuniqueeffectsareindependentandwillbediversifiedawayinalargeportfolioArbitragePricingTheory(APT)60ArbitragePricingTheory(APT)APTassumesthat,inequilibrium,thereturnonazero-investment,zero-systematic-riskportfolioiszerowhentheuniqueeffectsarediversifiedawayTheexpectedreturnonanyasseti(Ei)canbeexpressedas:ArbitragePricingTheory(APT)61ArbitragePricingTheory(APT)where:=theexpectedreturnonanassetwithzerosystematicriskwhere=theriskpremiumrelatedtoeachofthecommonfactors-forexampletheriskpremiumrelatedtointerestrateriskbi=thepricingrelationshipbetweentheriskpremiumandasseti-thatishowresponsiveassetiistothiscommonfactorKArbitragePricingTheory(APT)62ExampleofTwoStocks
andaTwo-FactorModel=changesintherateofinflation.Theriskpremiumrelatedtothisfactoris1percentforevery1percentchangeintherate=percentgrowthinrealGNP.Theaverageriskpremiumrelatedtothisfactoris2percentforevery1percentchangeintherate=therateofreturnonazero-systematic-riskasset(zerobeta:boj=0)is3percentExampleofTwoStocks
andaT63ExampleofTwoStocks
andaTwo-FactorModel=theresponseofassetXtochangesintherateofinflationis0.50=theresponseofassetYtochangesintherateofinflationis2.00=theresponseofassetXtochangesinthegrowthrateofrealGNPis1.50=theresponseofassetYtochangesinthegrowthrateofrealGNPis1.75ExampleofTwoStocks
andaT64ExampleofTwoStocks
andaTwo-FactorModel
=.03+(.01)bi1+(.02)bi2Ex=.03+(.01)(0.50)+(.02)(1.50)=.065=6.5%
Ey=.03+(.01)(2.00)+(.02)(1.75)=.085=8.5%ExampleofTwoStocks
andaT65Roll-RossStudyThemethodologyusedinthestudyisasfollows:Estimatetheexpectedreturnsandthefactorcoefficientsfromtime-seriesdataonindividualassetreturnsUsetheseestimatestotestthebasiccross-sectionalpricingconclusionimpliedbytheAPTTheauthorsconcludedthattheevidencegenerallysupportedtheAPT,butacknowledgedthattheirtestswerenotconclusiveRoll-RossStudyThemethodology66Extensionsofthe
Roll-RossStudyCho,Elton,andGruberexaminedthenumberoffactorsinthereturn-generatingprocessthatwerepricedDhrymes,Friend,andGultekin(DFG)reexaminedtechniquesandtheirlimitationsandfoundthenumberoffactorsvarieswiththesizeoftheportfolioExtensionsofthe
Roll-RossS67TheAPTandAnomaliesSmall-firmeffectReinganum-resultsinconsistentwiththeAPTChen-supportedtheAPTmodeloverCAPMJanuaryanomalyGultekin-APTnotbetterthanCAPMBurmeisterandMcElroy-effectnotcapturedbymodel,butstillrejectedCAPMinfavorofAPTTheAPTandAnomaliesS
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)公司季度活動方案
- 理療養(yǎng)生店開業(yè)活動方案
- 物業(yè)中秋國慶活動方案
- 物業(yè)小區(qū)尋寶活動方案
- 狗狗明星評選活動方案
- 班級戶外燒烤活動方案
- 熊貓涮鍋活動方案
- 甜點(diǎn)烘焙活動方案
- 獨(dú)山中學(xué)評課活動方案
- 物業(yè)瑜伽活動策劃方案
- 2025年廣西中考語文試題卷(含答案)
- 江蘇省南通市2024-2025學(xué)年高二下學(xué)期6月期末質(zhì)量監(jiān)測政治試題(含答案)
- 電工廠搬遷方案(3篇)
- 一級醫(yī)院醫(yī)保管理制度
- 2025年南京市中考數(shù)學(xué)真題試卷
- 老年人眼科疾病
- 鋼板配送設(shè)計(jì)方案(3篇)
- 2025年呼倫貝爾農(nóng)墾集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 2025年重慶市中考數(shù)學(xué)試卷真題(含標(biāo)準(zhǔn)答案)
- 2025年內(nèi)蒙古煤炭地質(zhì)勘查(集團(tuán))一零九有限公司招聘筆試參考題庫含答案解析
- 中醫(yī)基礎(chǔ)學(xué)課件護(hù)理情志
評論
0/150
提交評論