2023年黑龍江省賓縣第一中學高三第一次調研測試數學試卷(含答案解析)_第1頁
2023年黑龍江省賓縣第一中學高三第一次調研測試數學試卷(含答案解析)_第2頁
2023年黑龍江省賓縣第一中學高三第一次調研測試數學試卷(含答案解析)_第3頁
2023年黑龍江省賓縣第一中學高三第一次調研測試數學試卷(含答案解析)_第4頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.2.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.3.已知函數(),若函數有三個零點,則的取值范圍是()A. B.C. D.4.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.5.正方形的邊長為,是正方形內部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.6.已知復數(為虛數單位),則下列說法正確的是()A.的虛部為 B.復數在復平面內對應的點位于第三象限C.的共軛復數 D.7.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙8.已知定義在上函數的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.6749.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.10.已知向量與的夾角為,,,則()A. B.0 C.0或 D.11.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.12.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若四棱錐的側面內有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.14.已知函數,,若函數有3個不同的零點x1,x2,x3(x1<x2<x3),則的取值范圍是_________.15.若,則________.16.成都市某次高三統考,成績X經統計分析,近似服從正態分布,且,若該市有人參考,則估計成都市該次統考中成績大于分的人數為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.18.(12分)某校共有學生2000人,其中男生900人,女生1100人,為了調查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據收集100人的樣本數據,得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數據中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87919.(12分)已知集合,集合.(1)求集合;(2)若,求實數的取值范圍.20.(12分)已知,(其中).(1)求;(2)求證:當時,.21.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大小;(2)求函數的值域.22.(10分)已知是等腰直角三角形,.分別為的中點,沿將折起,得到如圖所示的四棱錐.(Ⅰ)求證:平面平面.(Ⅱ)當三棱錐的體積取最大值時,求平面與平面所成角的正弦值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【答案解析】

由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據雙曲線的性質即可得解.【題目詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【答案點睛】本題考查了雙曲線定義的應用,考查了轉化化歸思想,屬于中檔題.2.D【答案解析】

使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【題目詳解】解:,又解得,所以故選:D【答案點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.3.A【答案解析】

分段求解函數零點,數形結合,分類討論即可求得結果.【題目詳解】作出和,的圖像如下所示:函數有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【答案點睛】本題考查由函數零點的個數求參數范圍,屬中檔題.4.D【答案解析】

本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【題目詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【答案點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.5.C【答案解析】

分別以直線為軸,直線為軸建立平面直角坐標系,設,根據,可求,而,化簡求解.【題目詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【答案點睛】本題考查向量的數量積的坐標表示,屬于基礎題.6.D【答案解析】

利用的周期性先將復數化簡為即可得到答案.【題目詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數為,C錯誤;,D正確.故選:D.【答案點睛】本題考查復數的四則運算,涉及到復數的虛部、共軛復數、復數的幾何意義、復數的模等知識,是一道基礎題.7.A【答案解析】

利用逐一驗證的方法進行求解.【題目詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【答案點睛】本題將數學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.8.B【答案解析】

由題知為奇函數,且可得函數的周期為3,分別求出知函數在一個周期內的和是0,利用函數周期性對所求式子進行化簡可得.【題目詳解】因為為奇函數,故;因為,故,可知函數的周期為3;在中,令,故,故函數在一個周期內的函數值和為0,故.故選:B.【答案點睛】本題考查函數奇偶性與周期性綜合問題.其解題思路:函數的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數值的自變量轉化到已知解析式的函數定義域內求解.9.B【答案解析】

設雙曲線的漸近線方程為,與拋物線方程聯立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【題目詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【答案點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.10.B【答案解析】

由數量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【題目詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【答案點睛】本題主要考查向量數量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.11.C【答案解析】

畫出圖形,以為基底將向量進行分解后可得結果.【題目詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【答案點睛】應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質就是利用平行四邊形法則或三角形法則進行向量的加減運算或數乘運算.12.A【答案解析】

根據充分條件和必要條件的定義,結合線面垂直的性質進行判斷即可.【題目詳解】當m⊥平面α時,若l∥α”則“l⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l∥α”是“l⊥m”充分不必要條件,故選:A.【答案點睛】本題主要考查充分條件和必要條件的判斷,結合線面垂直的性質和定義是解決本題的關鍵.難度不大,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數k,可得,由此可得,則由可求k值.【題目詳解】解:如圖,設二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【答案點睛】本題考查了四棱錐的結構特征,由四棱錐的側面與底面的夾角求參數值,屬于中檔題.14.【答案解析】

先根據題意,求出的解得或,然后求出f(x)的導函數,求其單調性以及最值,在根據題意求出函數有3個不同的零點x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【題目詳解】解:令t=f(x),函數有3個不同的零點,即+m=0有兩個不同的解,解之得即或因為的導函數,令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數有3個不同的零點,(1)有兩個不同的解,此時有一個解;(2)有兩個不同的解,此時有一個解當有兩個不同的解,此時有一個解,此時,不符合題意;或是不符合題意;所以只能是解得,此時=-m,此時有兩個不同的解,此時有一個解此時,不符合題意;或是不符合題意;所以只能是解得,此時=,綜上:的取值范圍是故答案為【答案點睛】本題主要考查了函數與導函數的綜合,考查到了函數的零點,導函數的應用,以及數形結合的思想、分類討論的思想,屬于綜合性極強的題目,屬于難題.15.13【答案解析】

由導函數的應用得:設,,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【題目詳解】解:設,,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【答案點睛】本題考查了導函數的應用、二項式定理,屬于中檔題16..【答案解析】

根據正態分布密度曲線性質,結合求得,即可得解.【題目詳解】根據正態分布,且,所以故該市有人參考,則估計成都市該次統考中成績大于分的人數為.故答案為:.【答案點睛】此題考查正態分布密度曲線性質的理解辨析,根據曲線的對稱性求解概率,根據總人數求解成績大于114的人數.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【答案解析】

(1)根據等邊三角形的性質證得,根據面面垂直的性質定理,證得底面,由此證得,結合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【題目詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【答案點睛】本小題主要考查面面垂直的判定定理和性質定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1)男生人數為人,女生人數55人.(2)列聯表答案見解析,有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【答案解析】

(1)求出男女比例,按比例分配即可;(2)根據題意結合頻率分布表,先求出二聯表中數值,再結合公式計算,利用表格數據對比判斷即可【題目詳解】(1)因為男生人數:女生人數=900:1100=9:11,所以男生人數為,女生人數100﹣45=55人,(2)由頻率頻率直方圖可知學生每周平均體育鍛煉時間超過2小時的人數為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時間超過2小時的女生人數為37人,聯表如下:男生女生總計每周平均體育鍛煉時間不超過2小時71825每周平均體育鍛煉時間超過2小時383775總計4555100因為3.892>3.841,所以有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關.【答案點睛】本題考查分層抽樣,獨立性檢驗,熟記公式,正確計算是關鍵,屬于中檔題.19.(1);(2).【答案解析】

(1)求出函數的定義域,即可求出結論;(2)化簡集合,根據確定集合的端點位置,建立的不等量關系,即可求解.【題目詳解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以實數的取值范圍為.【答案點睛】本題考查集合的運算,集合間的關系求參數,考查函數的定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論