




下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
圖像與處Image 第二講:圖像處理基人工智能與機(jī)器InstituteofArtificial ligenceand蘭旭圖像處Image圖像處ImageThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematicalThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematical圖像圖像Image處HumanVisualThebestvisionmodelweKnowledgeofhowimagesformintheeyecanhelpuswithprocessingdigitalWewilltakejustawhirlwindtourofthehumanvisualsystem圖像 處理Image 睫狀睫狀OfThe
角前前虹虹眼球晶白內(nèi)障眼球晶
纖纖維肌視網(wǎng)角視網(wǎng)
玻璃狀盲盲
神經(jīng)
Retinalsurface凹Cones:details(women)6-7m:color-photopic凹圖像圖像Image處
Choroid:nutritiontoeyeIris:colortoeyeRods:generalvisionCones:details(women)HumanVisualThelensfocuseslightfromobjectsontotheretinaTheretinaiscoveredwithlightreceptorscalledcones(6-7million)androds(75-150Conesareconcentratedaroundthefoveaandareverysensitivetocolour,photopicvisionRodsaremorespreadoutandaresensitivetolowlevelsofillumination,scotopicvisionBlind-SpotDrawanimagesimilartothatbelowonapieceofpaper(thedotandcrossareabout6inchesapart)CloseyourrighteyeandfocusonthecrosswithyourlefteyeHoldtheimageabout20inchesawayfromyourfaceandmoveitslowlytowardsyouThedotshouldImageFormationInTheMuscleswithintheeyecanbeusedtochangetheshapeofthelensallowingusfocusonobjectsthatarenearorfarawayAnimageisfocusedontotheretinacausingrodsandconesto eexcitedwhich ysendsignalstothe BrightnessAdaptation&Thehumanvisualsystemcanperceive y1010differentlightintensityHowever,atanyonetimewecanonlydiscriminatebetweenamuchsmallerregionisrelatedtothelightintensitiesoftheregionssurroundingit圖像處Image圖像處ImageGoodWeberpoorbrightnesspoorbrightness圖像 處Image Inlow-levelillumination,ispoor(WeberratioisCarriedoutbyrods-暗光Itimprovessignificantlyasbackgroundcarriedoutbycones—圖像處Image圖像處ImageBrightnessAdaptation&ErnstPerceivedbrightnessIsPerceivedbrightnessIsnotasimplefunctionofintensityAnexampleofMachUndershootaroundTheboundaryofRegionsUndershootaroundTheboundaryofRegionsOfdifferentAnAnexampleofsimultaneousPerceivedPerceivedbrightnessdoesnotdependSimplyonitsintensityFormoregreatillusionexamplestakealookAvailable圖像圖像Image處OpticalOurvisualplaylotsoftricksonusMindMapExercise:MindMapForNoteBeauLotto:BeauLotto:OpticalIllusionsShowHowWeThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematicalLightAndTheElectromagneticIn1666SirIsaacNewtondiscoveredthatlightpassedthroughaprismsplitsintoacontinuousspectrumofLightisjustaparticularpartoftheelectromagneticspectrumthatcanbesensedbythehumaneyeTheelectromagneticspectrumissplitupaccordingtothewavelengthsofdifferentformsofenergyLightandEMc E h:Planck's光譜能波長(zhǎng)m光譜能ElectromagneticElectromagneticshorterwaveMoreenergyshorterwaveMoreenergyv圖像Image圖像Image處LightandEMThecolorsthathumansperceiveinanobjectaredeterminedbythenatureofthelightreflectedfromtheobject.e.g.greenobjectsreflectlightwithwavelengthsMonochromaticlight:voidofIntensityistheonlyattribute,fromblacktoMonochromaticimagesarereferredtoasgray-Chromaticlightbands:0.43to0.79umThequalityofachromaticlightsource:Radiance:totalamountofenergyLuminance(lm):theamountofenergyanobserverfromalightBrightness:asubjectivedescriptoroflightperceptionthatisimpossibletomeasure.Itembodiestheachromaticnotionofintensityandoneofthekeyfactorsindescribingcolorsensation.圖像圖像Image處ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematical圖像 處Image Sampling,sationAndInthefollowingslideswewillconsiderwhatisinvolvedincapturingadigitalimageofareal-worldsceneImagesensingandSamplingand圖像 處Image ImageingenergylandsonasensormaterialresponsivetothattypeofenergyandthisgeneratesavoltageCollectionsofsensorsarearrangedtocaptureimagesImagingLineofImage ArrayofImage圖像處Image圖像處ImageImagetolightHighprecision
Lowcost:UsingSensorStripsand
圖像圖像Image處ImageImagesaretypicallygeneratedbyenergyreflectedbytheobjectsinthatsceneTypicalnotionsofilluminationandscenecanbewayoff:X-raysofaUltrasoundofanunbornbabyimagesofmoleculesASimpleImageFormationProportionaltoenergyradiatedbyaphysicalsourcef(x,y)i(x,y)rProportionaltoenergyradiatedbyaphysicalsourcewhere0<i(x,y)<and0<r(x,y)<1SomeTypicalRangesofLumen—AunitoflightfloworluminousLumenpersquaremeter(lm/m2)—ThemetricunitofmeasureforilluminanceofasurfaceOnaclearday,thesunmayproduceinexcessof90,000lm/m2ofilluminationonthesurfaceoftheEarthOnacloudyday,thesunmayproducelessthan10,000lm/m2ofilluminationonthesurfaceoftheEarthOnaclearevening,themoonyieldsabout0.1lm/m2ofThetypicalilluminationlevelinacommercialofficeisabout1000SomeTypicalRangesof0.01forblack0.65forstainless0.80forflat-whitewall0.90forsilver-plated0.93for圖像 處Image GrayMonochromelf(x0,y0)LminlLmaxLminiminrminLmaximaxrmax[Lmin,Lmax圖像圖像Image處ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematicalImageSamplingAndAdigitalsensorcanonlymeasurealimitednumberofsamplesatadiscretesetofenergysationistheprocessofconvertinga oguesignalintoadigitalrepresentationofthissignalImageSamplingAndImageSampling 圖像 處Image ImageSamplingAndRememberthatadigitalimageisalwaysonlyanapproximationofarealworldImagequalityisImagequalityisdeterminedbythenumberofsamplesAnddiscreteintensitylevelsusedinsamplingand 圖像圖像Image處ImageSamplingAndSamplingisdeterminedbythesensorarrangementusedtogeneratetheSamplingaccuracyrelatestoqualityoftheopticalcomponentsofthesystem.ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematical圖像處Image圖像處ImageImageBeforewediscussimageacquisitionrecallthatadigitalimageiscomposedofMrowsandNcolumnsofpixelseachstoringavaluef(row,f(row,Wewillseelateronthatimagescaneasilyberepresentedas圖像Image圖像Image處RepresentingDigitalTherepresentationofanM×Nnumericalarrayasf(x,y)
f(0,f
ff
f(0,N f(1,N f(M1,
f(M
f(M1,N TherepresentationofanM×Nnumericalarrayas
a0,N
Aaa
M
aM
1,N TherepresentationofanM×Nnumericalarrayinfff(x,y) f(M
f f(2, f(M,
f(1,N)f(2,N) f(M,N 圖像 處Image Saturation:Saturation:upperlimitNose:LowerlimitContrast:Contrast:highest-圖像 處Image RepresentingDigitalDiscreteintensityinterval[0,L-1],Thenumberbofbitsrequiredtostorea×Ndigitizedimageb=M×N×k圖像 處Image RepresentingDigital60f/s,3.75TB/s,60f/s,3.75TB/s,2h,圖像 處Image SpatialdeterminedbyhowsamplingwascarriedSpatialresolutionsimplyreferstothesmallestdiscernabledetailVisionspecialistswilloftentalkaboutpixel
Graphicdesignerswilltalkaboutdotsperinch(DPI)圖像與處Spadeorocsneny圖像處Image圖像處ImageSpatialResolution圖像圖像Image處IntensityLevelIntensitylevelresolutionreferstothenumberofintensitylevelsusedtorepresenttheimageThemoreintensitylevelsused,thefinerthelevelofdetaildiscernableinanimageIntensitylevelresolutionisusuallygivenintermsofthenumberofbitsusedtostoreeachintensityNumberofNumberofIntensity120,2400,01,10,40000,0101,8SpatialandIntensitySpatial—Ameasureofthesmallestdiscernibledetailinan—statedwithlinepairsperunitdistance,dots(pixels)perunitdistance,dotsperinch(dpi)IntensityThesmallestdiscerniblechangeinintensitystatedwith8bits,12bits,16bits,圖像處Image圖像處ImageIntensityLevel256graylevels(8bitsperpixel)128gray(764gray(632gray(516gray(48graylevels(3bpp)4gray(22gray(1圖像 處Image IntensityLevel256graylevels(8bitsper 128graylevels(7 64graylevels(6 32graylevels(516graylevels(4 8graylevels(3 4graylevels(2 2graylevels(1圖像Image圖像Image處Resolution:HowMuchIsThebigquestionwithresolutionisalwayshowmuchisenough?ThisalldependsonwhatisintheimageandwhatyouwouldliketodowithitKeyquestionsDoestheimagelookaestheticallyCanyouseewhatyouneedtoseewithinthe Thepictureontherightisfineforcountingthenumberofcars,butnotforreadingthenumberplate圖像 處Image IntensityLevelLow Medium High圖像圖像Image處IntensityLevelIntensityLevelIntensityLevel圖像 處Image PointslyingonanPointslyingonancorrspondtoimagesofequalsubjectivequalityFixedKIncreaseImageswithalargeamountofdetailonlyafewintensitylevelsmaybe圖像圖像Image處ImageInterpolation—Processofusingknowndatatoestimateunknownvaluese.g.,zooming,shrinking,rotating,andgeometricInterpolation(sometimescalledresampling)—animagingmethodtoincrease(ordecrease)thenumberofpixelsinadigitalimage.SomedigitalcamerasuseinterpolationtoproducealargerimagethanthesensorcapturedortocreatedigitalzoomUsingknowndatatoestimatevaluesatunknown 圖像 處Image ImageInterpolation:NearestNeighborf1(x2,y2)f(round(x2),
f1(x3,y3)f(round(x3),圖像圖像Image處ImageInterpolation:Bilinearv(x,y)axbycxy444f2(x,(1a)(1b)f(l,k)a(1b)f(l1,k(1a)bf(l,k1)abf(l1,klfloor(x),kfloor(y),axl,byImageInterpolation:BicubicTheintensityvalueassignedtopoint(x,y)isobtainedbythefollowingequation ay f3(x,y) ay i0 jThesixteencoefficientsaredeterminedbyusingthesixteennearestneighbors.PreservemoredetailPreservemoredetail圖像 處Image Examples:213*162-72dpi---213*162-72dpi--- 圖像 處Image Examples:150dpi---150dpi--- 圖像圖像處Image Examples:圖像Image圖像Image處Examples:圖像處Image圖像處ImageExamples:圖像處Image圖像處ImageExamples:圖像圖像Image處ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematical圖像Image圖像Image處BasicRelationshipsBetweenRegionsandNeighborsofapixelpatcoordinates4-neighborsofp,denotedbyN4(p):(x-1,y),(x+1,y),(x,y-1),and(x,y+1).4diagonalneighborsofp,denotedbyND(p):(x-1,y-1),(x+1,y+1),(x+1,y-1),and(x-1,y+1).8neighborsofp,denotedN8(p)=N4(p)ULetVbethesetofintensity4-adjacency:TwopixelspandqwithvaluesfromVare4-adjacentifqisinthesetN4(p).8-adjacency:TwopixelspandqwithvaluesfromVare8-adjacentifqisinthesetN8(p).LetVbethesetofintensitym-adjacency:TwopixelspandqwithvaluesfromVarem-adjacentifqisinthesetN4(p),qisinthesetND(p)andthesetN4(p)∩N4(q)hasnopixelsvaluesarefrom圖像 處Image qisinthesetN4(p),qisinthesetND(p)andthesetN4(p)∩N4(q)hasnopixelswhosevaluesarefromV.圖像圖像Image處BasicRelationshipsBetweenA(digital)path(orcurve)frompixelpwithcoordinates(x0,y0)topixelqwithcoordinates(xn,yn)isasequenceofdistinctpixelswith(x0,y0),(x1,y1),…,(xn,Where(xi,yi)and(xi-1,yi-1)areadjacentfor1≤i≤HerenisthelengthoftheIf(x0,y0)=(xn,yn),thepathisclosedWecandefine4-,8-,andm-pathsbasedonthetypeofadjacency圖像Image圖像Image處Examples:Adjacencyand
V={1,
V={1,
qisinthesetN4(p),qisinthesetND(p)andthesetN4(p)∩N4(q)hasnopixelswhosevaluesarefromV.
V={1,1 11 1
11 11 The8-pathfrom(1,3)to(1,3),(1,2),(2,2),(1,3),(2,2),
Them-pathfrom(1,3)to(1,3),(1,2),(2,2),圖像Image圖像Image處BasicRelationshipsBetweenConnectedinLetSrepresentasubsetofpixelsinanimage.Twopixelspwithcoordinates(x0,y0)andqwithcoordinates(xn,yn)aresaidtobeconnectedinSifthereexistsapath(x0,y0),(x1,y1),…,(xn,Wherei,0in,(xi,yi)ApathbetweenthemconsistingentirelyofpixelsinLetSrepresentasubsetofpixelsinanForeverypixelpinS,thesetofpixelsinSthatareconnectedtopisIfShasonlyoneconnectedcomponent,thenSiscalledConnectedWecallRaregionoftheimageifRisaconnectedTworegions,RiandRjaresaidtobeadjacentiftheirunionformsaconnectedset.Regionsthatarenottobeadjacentaresaidtobe圖像 處Image Adjacent圖像Image圖像Image處QuestionInthefollowingarrangementofpixels,arethetworegions(of1s)adjacent?(if8-adjacencyisused)RegionRegionRegion11Region111101010001111111Inthefollowingarrangementofpixels,arethetwoparts(of1s)adjacent?(if4-adjacencyisused)PartPartPart11Part111101010001111111圖像圖像Image處RegionRegionInthefollowingarrangementofpixels,thetworegions(of1s)aredisjoint(if4-adjacencyisused)11111101010001111111RegionInthefollowingarrangementofpixels,thetworegions(of1s)aredisjoint(if4-adjacencyisused)111101010001111111圖像 處Image BasicRelationshipsBetweenBoundary(orTheboundaryoftheregionRisthesetofpixelsintheregionthathaveoneormoreneighborsthatarenotinR.IfRhappenstobeanentireimage,thenitsboundaryisdefinedasthesetofpixelsinthe andlastrowsandcolumnsoftheimage.ForegroundandAnimagecontainsKdisjointregions,Rk,k=1,2,…,K.LetRudenotetheunionofalltheKregions,andlet(Ru)cdenoteitscomplement.AllthepointsinRuiscalledforeground;Allthepointsin(Ru)ciscalledbackground.圖像 處Image InnerboundaryOuter圖像Image圖像Image處QuestionInthefollowingarrangementofpixels,thecircledpointispartoftheboundaryofthe1-valuedpixelsif8-neighborisused,trueorfalse?00000000000110001100011100111000000圖像圖像Image處QuestionInthefollowingarrangementofpixels,thecircledpointispartoftheboundaryofthe1-valuedpixelsif4-neighborisused,trueorfalse?00000000110001100011100111000000圖像Image圖像Image處DistanceGivenpixelsp,qandzwithcoordinates(x,y),(s,t),(u,v)respectively,thedistancefunctionDhasfollowingproperties:D(p,q)≥ [D(p,q)=0,iffp=D(p,q)=D(q,D(p,z)≤D(p,q)+D(q,ThefollowingarethedifferentDistanceEuclideanDistanceDe(p,q)=[(x-s)2+(y-CityBlockDistance:D4(p,q)=|x-s|+|y-t|ChessBoardDistance:D8(p,q)=max(|x-s|,|y-t|)圖像Image圖像Image處QuestionInthefollowingarrangementofpixels,what’sthevalueofthechessboarddistancebetweenthecircledtwopoints?0000000000011001100010000000000000Inthefollowingarrangementofpixels,what’sthevalueofthecity-blockdistancebetweenthecircledtwopoints?0000000000011001100010000000000000圖像Image圖像Image處QuestionInthefollowingarrangementofpixels,what’sthevalueofthelengthofthem-pathbetweenthecircledtwopoints?000000011000 11000000000000000圖像圖像Image處QuestionInthefollowingarrangementofpixels,what’sthevalueofthelengthofthem-pathbetweenthecircledtwopoints? ThehumanvisualLightandtheelectromagneticImagesensingandSampling,sationandImageBasicrelationshipsbetweenMathematicalIntroductiontoMathematicalOperationsinArrayvs.Matrix A a12
B
22
22Arraya a A.*BArraya a
22
A*B
a11b11aa a
aa a 22
Matrix圖像 處Image IntroductiontoMathematicalLinearvs.NonlinearHf(x,y)g(x,Haifi(x,y)ajfj(x,Haifi(x,y)Hajfj(x,aiHfi(x,y)ajHfj(x,aigi(x,y)ajgj(x,
HissaidtobealinearHissaidtobeanonlinearoperatorifitdoesnotmeettheabovequalification.圖像 處Image ArithmeticArithmeticoperationsbetweenimagesarearrayoperations.Thefourarithmeticoperationsaredenoteds(x,y)=f(x,y)+d(x,y)=f(x,y)–p(x,y)=f(x,y)×v(x,y)=f(x,y)÷圖像 處Image AnExampleofImageLeastsignificantbitLeastsignificantbit圖像Image圖像Image處Example:AdditionofNoisyImagesforNoiseNoiselessimage:Noise:n(x,y)(ateverypairofcoordinates(x,y),thenoiseisuncorrelatedandhaszeroaveragevalue)Corruptedimage:g(x,y)=f(x,y)+ReducingthenoisebyaddingasetofnoisyKig(x,y)1g(x,iKKg(x,y)1g(x,
K2 g(x,y
K
E[g(x,y)f(x,Eg(x,y)EK
gi(x,y)
1gi(x,yKK K
E[
gi(x,y)f(x,E
f(x,y)ni(x,
K
(f(x,y)n(x,y))
f(x,f(x,y)E
ni(x,y)
iKif(x,
K
E[K
in(x,i2 11Kn(x,y) Ki
2n(x,y圖像 處Image Example:AdditionofNoisyImagesforNoiseInastronomy,imagingunderverylowlightlevelsfrequentlycausessensornoisetorendersingleimagesvirtuallyuselessfor Inastronomicalobservations,similarsensorsfornoisereductionbyobservingthesamesceneoverlongperiodsoftime.Imageaveragingisthenusedtoreducethenoise. 1020 50 100圖像 處Image AnExampleofImageSubtraction:MaskModeMaskh(x,y):anX-rayimageofaregionofapatient’sLiveimagesf(x,y):X-rayimagescapturedatTVratesafterinjectionofthecontrastmediumg(x,y)=f(x,y)-TheproceduregivesamovieshowinghowthecontrastmediumpropagatesthroughthevariousarteriesintheareabeingLiveEnhanced
Theproceduregivesamovieshowinghowthecontrastmediumpropagatesthroughthevariousarteriesintheareabeingobserved.圖像 處Image AnExampleofImageShadedShadedShadedShadedG(x,y)=f(x,y)h(x,y):f(x,y)perfectimage;h(x,y)shaded 圖像 處Image IntensityGivenimagef,guaranteethefullrangeofanarithmeticoperationbetweenimagesiscapturedintoafixednumberofbits0-255,sum:0-
fmfmin(ffsK[fm/max(fm)]0fmK8bit8bit圖像 處Image SpatialSingle-pixelAlterthevaluesofanimage’spixelsbasedonthesT(z)圖像處Image圖像處ImageSpatial NeighborhoodThevalueofthispixelisdeterminedbyaspecifiedoperationinvolvingthepixelsintheThevalueofthispixelisdeterminedbyaspecifiedoperationinvolvingthepixelsintheinputimagewithcoordinatesinSxy圖像圖像Image處GeometricSpatialGeometrictransformation(rubber-sheet—Aspatialtransformationof(x,y)T{(v,—intensityinterpolationthatassignsintensityvaluestothespatiallytransformedpixels.Affine
1
00 1
t31 圖像 處Image IntensityForward(x,y)T{(v,It’spossiblethattwoormorepixelscanbetransformedtothesamelocationintheoutputimage.Inverse(v,w)T1{(x,ThenearestinputpixelstodeterminetheintensityoftheoutputpixelInversemapsaremoreefficienttoimplementthan 圖像 處Image Example:ImageRotationandIntensityRotate21-圖像Image圖像Image處Image Inputandoutputimagesareavailablebutthetransformationfunctionisunknown.Goal:estimatethetransformationfunctionanduseittoregisterthetwoimages. Oneoftheprincipalapproachesforimage Thecorrespondingpointsareknownpreciselyintheinputandoutput(reference)images.Asimplemodelbasedonbilinearxc1vc2wc3vwycvcwcvw Where(v,w)and(x,y)arethecoordinatesoftiepointsintheinputandreferenceimages.mIm圖像 處ImageImageImageEOCompositebeforeIR
IRCompositeafter圖像 處Image 圖像配參考圖像(主圖像 待配準(zhǔn)圖像(輔圖像 圖像圖像Image處AffinevsNon-Non-Non-AverageAnatomicalImagesfrom10Subjectsdisplayedat1.5x1.5x1.5Image 圖像Image Imageregistration圖像 處Image ImageAparticularlyimportantclassof2-Dlineartransforms,denotedT(u,v)M1NT(u,v) f(x,y)r(x,y,u,x0wheref(x,y)istheinputr(x,y,u,v)istheforwardtransformationkernel,variablesuandvarethetransformvariables,u=0,1,2,...,M-1andv=0,1,...,N-圖像Image圖像Image處ImageGivenT(u,v),theoriginalimagef(x,y)canberecoveredusingtheinversetransformationofT(u,v).M1Nf(x,y) T(u,v)s(x,y,u,u0wheres(x,y,u,v)istheinversetransformation x=0,1,2,...,M-1andy=0,1,...,N-1.圖像 處Image Example:ImageDenoisingbyUsingDCTDifferentDifferentsinusoidal圖像 處Image FourierFT圖像圖像Image處圖像圖像Image處ForwardTransformM1NT(u,v) f(x,y)r(x,y,u,x0yThekernelr(x,y,u,v)issaidtobeSEPERABLEr(x,y,u,v)r1(x,u)r2(y,Inaddition,thekernelissaidtobeSYMMETRICr1(x,u)isfunctionallyequaltor2(y,v),sor(x,y,u,v)r1(x,u)1(y,TheKernelsfor2-DFourierTheforwardr(x,y,u,v)ej2(ux/Mvy/NWhere Theinverses(x,y,u,v)
ej2(ux/Mvy/N2-DFourierM1NT(u,v) f(x,y)ej2(ux/Mvy/Nx0yTAFA[ej2ux/M][image][ej2vy/Nf(x,y)
M1NT(u,v)ej2(ux/Mvy/Nu0 BTBBAFAB BF B F]圖像 處Image ProbabilisticLetzi,i0,1,2,...,L-1,denotethevaluesofallpossibleintensitiesinanMNdigitalimage.Theprobability,p(zk),ofintensitylevelzkoccurringinagivenimageisestimatedp(zk)
wherenkisthenumberoftimesthatintensityp(zk)kThemean(average)intensityisgivenm zkp(zkk
occursinthe圖像 處Image ProbabilisticThevarianceoftheintensitiesisgiven2 =(zkm)2p(zk2kThenthmomentoftheintensityvariablezun(z)=(zkk
m)np(zk圖像 處Image Example:ComparisonofStandardDeviation
圖像 處Image BackgroundmathematicsMatrixalgebra圖像圖像Image處Review:MatricesandSomeAnm×n(read"mbyn")matrix,denotedbyA,isarectangulararrayofentriesorelements(numbers,orsymbolsrepresentingnumbers)enclosedtypicallybysquarebrackets,wheremisthenumberofrowsandnthenumberofcolumns.圖像Image圖像Image處Review:MatricesandDefinitionsAissquareifm=Aisdiagonalifalloff-diagonalelementsare0,andnotalldiagonalelementsare0.Aistheidentitymatrix(I)ifitisdiagonalandalldiagonalelementsare1.Aisthezeroornullmatrix(0)ifallitselementsareThetraceofAequalsthesumoftheelementsalongitsmainTwomatricesAandBareequaliffthehavethesamenumberofrowsandcolumns,andaij=bij.圖像Image圖像Image處Review:MatricesandDefinitionsThetransposeATof
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)設(shè)計(jì)與制造中的機(jī)器學(xué)習(xí)輔助設(shè)計(jì)
- 工業(yè)設(shè)計(jì)與新型建材的融合實(shí)踐
- 工作中的跨文化溝通與合作
- 工業(yè)風(fēng)與現(xiàn)代室內(nèi)設(shè)計(jì)的融合
- 工業(yè)風(fēng)教育空間設(shè)計(jì)創(chuàng)新案例
- 工業(yè)風(fēng)格辦公室裝修設(shè)計(jì)案例剖析
- 工作環(huán)境改善與員工工作效率的關(guān)聯(lián)性研究
- 工程塑料在機(jī)械中的應(yīng)用研究
- 工廠廠區(qū)綠化策略
- 工廠節(jié)能減排的實(shí)踐與經(jīng)驗(yàn)分享
- 人教版數(shù)學(xué)三年級(jí)下冊(cè)期末考試試卷及答案
- 2024年涉密人員考試試題庫(kù)保密基本知識(shí)試題附答案(考試直接用)
- 遺傳學(xué)智慧樹(shù)知到答案2024年吉林師范大學(xué)
- DB11T 765.4-2010 檔案數(shù)字化規(guī)范 第4部分:照片檔案數(shù)字化加工
- PTC Windchill:Windchill-系統(tǒng)架構(gòu)與組件教程.Tex.header
- 物業(yè)消防安全管理培訓(xùn)【共54張課件】
- 2024福建金皇環(huán)保科技公司校園招聘(高頻重點(diǎn)提升專題訓(xùn)練)共500題附帶答案詳解
- DL∕T 5766-2018 20KV及以下配電網(wǎng)工程工程量清單計(jì)算規(guī)范
- 【正版授權(quán)】 ISO/IEC 15421:2010 EN Information technology - Automatic identification and data capture techniques - Bar code master test specifications
- 云南省昆明市官渡區(qū)2023-2024學(xué)年五年級(jí)下學(xué)期7月期末道德與法治試題
- GB/T 43988-2024滑板課程學(xué)生運(yùn)動(dòng)能力測(cè)評(píng)規(guī)范
評(píng)論
0/150
提交評(píng)論