北京市西城66中2021-2022學年高考數學一模試卷含解析_第1頁
北京市西城66中2021-2022學年高考數學一模試卷含解析_第2頁
北京市西城66中2021-2022學年高考數學一模試卷含解析_第3頁
北京市西城66中2021-2022學年高考數學一模試卷含解析_第4頁
北京市西城66中2021-2022學年高考數學一模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正項等比數列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.82.在區間上隨機取一個數,使直線與圓相交的概率為()A. B. C. D.3.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.4.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.5.已知函數,滿足對任意的實數,都有成立,則實數的取值范圍為()A. B. C. D.6.若,,,點C在AB上,且,設,則的值為()A. B. C. D.7.設分別是雙曲線的左右焦點若雙曲線上存在點,使,且,則雙曲線的離心率為()A. B.2 C. D.8.臺球是一項國際上廣泛流行的高雅室內體育運動,也叫桌球(中國粵港澳地區的叫法)、撞球(中國臺灣地區的叫法)控制撞球點、球的旋轉等控制母球走位是擊球的一項重要技術,一次臺球技術表演節目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F處各放一個目標球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F處的目標球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm9.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.10.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.11.已知i為虛數單位,則()A. B. C. D.12.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若的最小值為,則實數的取值范圍是_________14.已知是函數的極大值點,則的取值范圍是____________.15.在棱長為6的正方體中,是的中點,點是面,所在平面內的動點,且滿足,則三棱錐的體積的最大值是__________.16.已知函數若關于的不等式的解集是,則的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調查.各組人數統計如下:小組甲乙丙丁人數12969(1)從參加問卷調查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數,求隨機變量的分布列和數學期望.18.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數便突破60萬,其中青年學生約有50萬人.現從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統計結果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數;(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數為X,求的分布列和數學期望;(Ⅲ)為便于聯絡,現將所有的青年學生志愿者隨機分成若干組(每組人數不少于5000),并在每組中隨機選取個人作為聯絡員,要求每組的聯絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據圖表中數據,以頻率作為概率,給出的最小值.(結論不要求證明)19.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.20.(12分)已知,,分別是三個內角,,的對邊,.(1)求;(2)若,,求,.21.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.22.(10分)某商店舉行促銷反饋活動,顧客購物每滿200元,有一次抽獎機會(即滿200元可以抽獎一次,滿400元可以抽獎兩次,依次類推).抽獎的規則如下:在一個不透明口袋中裝有編號分別為1,2,3,4,5的5個完全相同的小球,顧客每次從口袋中摸出一個小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如1,2,5),則獲得一等獎,獎金40元;若摸得的小球編號一次比一次小(如5,3,1),則獲得二等獎,獎金20元;其余情況獲得三等獎,獎金10元.(1)某人抽獎一次,求其獲獎金額X的概率分布和數學期望;(2)趙四購物恰好滿600元,假設他不放棄每次抽獎機會,求他獲得的獎金恰好為60元的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數列的計算,意在考查學生的計算能力.2.C【解析】

根據直線與圓相交,可求出k的取值范圍,根據幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.【點睛】本題主要考查了直線與圓的位置關系,幾何概型,屬于中檔題.3.B【解析】

根據圖象求得函數的解析式,即可得出函數的解析式,然后求出變換后的函數解析式,結合題意可得出關于的等式,即可得出結果.【詳解】由圖象可得,函數的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數解析式,同時也考查了利用函數圖象變換求參數,考查計算能力,屬于中等題.4.B【解析】

由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.5.B【解析】

由題意可知函數為上為減函數,可知函數為減函數,且,由此可解得實數的取值范圍.【詳解】由題意知函數是上的減函數,于是有,解得,因此,實數的取值范圍是.故選:B.【點睛】本題考查利用分段函數的單調性求參數,一般要分析每支函數的單調性,同時還要考慮分段點處函數值的大小關系,考查運算求解能力,屬于中等題.6.B【解析】

利用向量的數量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.7.A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡得.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線定義用表示出到兩焦點的距離,再由余弦定理得出的齊次式.8.D【解析】

過點做正方形邊的垂線,如圖,設,利用直線三角形中的邊角關系,將用表示出來,根據,列方程求出,進而可得正方形的邊長.【詳解】過點做正方形邊的垂線,如圖,設,則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點睛】本題考查直角三角形中的邊角關系,關鍵是要構造直角三角形,是中檔題.9.C【解析】

利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據兩對立事件的概率和為1求解即可.【詳解】設“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎題.10.B【解析】

設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,

當且僅當三點共線時,取“=”號,∴的最小值為.

故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質的應用,體現了數形結合的數學思想,屬于中檔題.11.A【解析】

根據復數乘除運算法則,即可求解.【詳解】.故選:A.【點睛】本題考查復數代數運算,屬于基礎題題.12.C【解析】試題分析:集合考點:集合間的關系二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當,,當且僅當時,等號成立.當時,為二次函數,要想在處取最小,則對稱軸要滿足并且,即,解得.【點睛】本題考查分段函數的最值問題,對每段函數先進行分類討論,找到每段的最小值,然后再對兩段函數的最小值進行比較,得到結果,題目較綜合,屬于中檔題.14.【解析】

方法一:令,則,,當,時,,單調遞減,∴時,,,且,∴在上單調遞增,時,,,且,∴在上單調遞減,∴是函數的極大值點,∴滿足題意;當時,存在使得,即,又在上單調遞減,∴時,,,所以,這與是函數的極大值點矛盾.綜上,.方法二:依據極值的定義,要使是函數的極大值點,由知須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據與的圖象關系,可得.15.【解析】

根據與相似,,過作于,利用體積公式求解OP最值,根據勾股定理得出,,利用函數單調性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點,點是面所在平面內的動點,且滿足,又,∴與相似∴,即,過作于,設,,∴,化簡得:,,根據函數單調性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點睛】本題考查三角形相似,幾何體體積以及函數單調性的綜合應用,難度一般.16.【解析】

根據題意可知的兩根為,再根據解集的區間端點得出參數的關系,再求解即可.【詳解】解:因為函數,關于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【點睛】本題主要考查了不等式的解集與參數之間的關系,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析,【解析】

(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調查的12名學生中隨機抽取2人,基本事件總數為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,分別求出相應的概率,由此能求出隨機變量的分布列和數學期望.【詳解】(1)由題設易得,問卷調查從四個小組中抽取的人數分別為4,3,2,3(人),從參加問卷調查的12名學生中隨機抽取兩名的取法共有(種),抽取的兩名學生來自同一小組的取法共有(種),所以,抽取的兩名學生來自同一個小組的概率為(2)由(1)知,在參加問卷調查的12名學生中,來自甲、丙兩小組的學生人數分別為4人、2人,所以,抽取的兩人中是甲組的學生的人數的可能取值為0,1,2,因為所以隨機變量的分布列為:012所求的期望為【點睛】此題考查概率的求法,考查離散型隨機變量的分布列和數學期望的求法,考查分層抽樣、古典概型、排列組合等知識,考查運算能力,屬于中檔題.18.(Ⅰ)萬;(Ⅱ)分布列見解析,;(Ⅲ)【解析】

(Ⅰ)根據比例關系直接計算得到答案.(Ⅱ)的可能取值為,計算概率得到分布列,再計算數學期望得到答案.(Ⅲ)英語測試成績在70分以上的概率為,故,解得答案.【詳解】(Ⅰ)樣本中女生英語成績在分以上的有人,故人數為:萬人.(Ⅱ)8名男生中,測試成績在70分以上的有人,的可能取值為:.,,.故分布列為:.(Ⅲ)英語測試成績在70分以上的概率為,故,故.故的最小值為.【點睛】本題考查了樣本估計總體,分布列,數學期望,意在考查學生的計算能力和綜合應用能力.19.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由可得到,代入,結合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結合正弦定理可得到,利用,,可得到,進而可求出周長的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長為.∵,∴,∴,∴的周長的取值范圍為.【點睛】本題考查了正弦定理、余弦定理在解三角形中的運用,考查了三角形的面積公式,考查了學生分析問題、解決問題的能力,屬于基礎題.20.(1);(2),或,.【解析】

(1)利用正弦定理,轉化原式為,結合,可得,即得解;(2)由余弦定理,結合題中數據,可得解【詳解】(1)由及正弦定理得.因為,所以,代入上式并化簡得.由于,所以.又,故.(2)因為,,,由余弦定理得即,所以.而,所以,為一元二次方程的兩根.所以,或,.【點睛】本題考查了正弦定理,余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.21.(1)見解析;(2)【解析】

(1)過點作交于,連接,設,連接,由角平分線的性質,正方形的性質,三角形的全等,證得,,由線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論