



版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數列,且,則橢圓的離心率為A. B. C. D.2.下列函數中,既是偶函數又在區間上單調遞增的是()A. B. C. D.3.在的展開式中,含的項的系數是()A.74 B.121 C. D.4.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.5.已知函數.設,若對任意不相等的正數,,恒有,則實數a的取值范圍是()A. B.C. D.6.已知集合,則()A. B. C. D.7.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.8.公比為2的等比數列中存在兩項,,滿足,則的最小值為()A. B. C. D.9.已知復數滿足,其中為虛數單位,則().A. B. C. D.10.“角谷猜想”的內容是:對于任意一個大于1的整數,如果為偶數就除以2,如果是奇數,就將其乘3再加1,執行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.911.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.12.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.在長方體中,,則異面直線與所成角的余弦值為()A. B. C. D.14.若,則____.15.若變量,滿足約束條件則的最大值為________.16.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.18.(12分)中的內角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.19.(12分)已知橢圓,直線不過原點且不平行于坐標軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.20.(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.21.(12分)等比數列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.22.(10分)已知函數.(1)求函數的單調遞增區間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】
如圖所示,設依次構成等差數列,其公差為.根據橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.2.C【答案解析】
結合基本初等函數的奇偶性及單調性,結合各選項進行判斷即可.【題目詳解】A:為非奇非偶函數,不符合題意;B:在上不單調,不符合題意;C:為偶函數,且在上單調遞增,符合題意;D:為非奇非偶函數,不符合題意.故選:C.【答案點睛】本小題主要考查函數的單調性和奇偶性,屬于基礎題.3.D【答案解析】
根據,利用通項公式得到含的項為:,進而得到其系數,【題目詳解】因為在,所以含的項為:,所以含的項的系數是的系數是,,故選:D【答案點睛】本題主要考查二項展開式及通項公式和項的系數,還考查了運算求解的能力,屬于基礎題,4.D【答案解析】
先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【題目詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【答案點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.5.D【答案解析】
求解的導函數,研究其單調性,對任意不相等的正數,構造新函數,討論其單調性即可求解.【題目詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數a的取值范圍是故選:D.【答案點睛】此題考查含參函數研究單調性問題,根據參數范圍化簡后構造新函數轉換為含參恒成立問題,屬于一般性題目.6.C【答案解析】
解不等式得出集合A,根據交集的定義寫出A∩B.【題目詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【答案點睛】本題考查了解不等式與交集的運算問題,是基礎題.7.D【答案解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【題目詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【答案點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.8.D【答案解析】
根據已知條件和等比數列的通項公式,求出關系,即可求解.【題目詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【答案點睛】本題考查等比數列通項公式,注意為正整數,如用基本不等式要注意能否取到等號,屬于基礎題.9.A【答案解析】
先化簡求出,即可求得答案.【題目詳解】因為,所以所以故選:A【答案點睛】此題考查復數的基本運算,注意計算的準確度,屬于簡單題目.10.B【答案解析】
模擬程序運行,觀察變量值可得結論.【題目詳解】循環前,循環時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環,輸出.故選:B.【答案點睛】本題考查程序框圖,考查循環結構,解題時可模擬程序運行,觀察變量值,從而得出結論.11.D【答案解析】
設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【題目詳解】設,,所以,,,所以.故選:D【答案點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.12.D【答案解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【題目詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【答案點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.C【答案解析】
根據確定是異面直線與所成的角,利用余弦定理計算得到答案.【題目詳解】由題意可得.因為,所以是異面直線與所成的角,記為,故.故選:.【答案點睛】本題考查了異面直線夾角,意在考查學生的空間想象能力和計算能力.14.【答案解析】
由,得出,根據兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結果.【題目詳解】因為,所以,所以.故答案為:.【答案點睛】本題考查三角函數化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.15.7【答案解析】
畫出不等式組表示的平面區域,數形結合,即可容易求得目標函數的最大值.【題目詳解】作出不等式組所表示的平面區域,如下圖陰影部分所示.觀察可知,當直線過點時,有最大值,.故答案為:.【答案點睛】本題考查二次不等式組與平面區域、線性規劃,主要考查推理論證能力以及數形結合思想,屬基礎題.16.192【答案解析】
根據題意,分步進行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數原理計算可得答案.【題目詳解】根據題意,分步進行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【答案點睛】本題考查排列、組合的應用,涉及分步計數原理的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【答案解析】
(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【題目詳解】(1)因為角為鈍角,,所以,又,所以,且,所以.(2)因為,且,所以,又,則,所以.18.(1)(2)10【答案解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根據二倍角的余弦公式計算即可;(2)由已知可得,利用余弦定理解出,由已知計算出與,再根據三角形的面積公式求出結果即可.【題目詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡得,,解得或(負值舍去),,,,,,的面積.【答案點睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應用,考查了二倍角公式的應用,考查了運算能力,屬于基礎題.19.(Ⅰ)詳見解析;(Ⅱ)能,或.【答案解析】試題分析:(1)設直線,直線方程與橢圓方程聯立,根據韋達定理求根與系數的關系,并表示直線的斜率,再表示;(2)第一步由(Ⅰ)得的方程為.設點的橫坐標為,直線與橢圓方程聯立求點的坐標,第二步再整理點的坐標,如果能構成平行四邊形,只需,如果有值,并且滿足,的條件就說明存在,否則不存在.試題解析:解:(1)設直線,,,.∴由得,∴,.∴直線的斜率,即.即直線的斜率與的斜率的乘積為定值.(2)四邊形能為平行四邊形.∵直線過點,∴不過原點且與有兩個交點的充要條件是,由(Ⅰ)得的方程為.設點的橫坐標為.∴由得,即將點的坐標代入直線的方程得,因此.四邊形為平行四邊形當且僅當線段與線段互相平分,即∴.解得,.∵,,,∴當的斜率為或時,四邊形為平行四邊形.考點:直線與橢圓的位置關系的綜合應用【一題多解】第一問涉及中點弦,當直線與圓錐曲線相交時,點是弦的中點,(1)知道中點坐標,求直線的斜率,或知道直線斜率求中點坐標的關系,或知道求直線斜率與直線斜率的關系時,也可以選擇點差法,設,,代入橢圓方程,兩式相減,化簡為,兩邊同時除以得,而,,即得到結果,(2)對于用坐標法來解決幾何性質問題,那么就要求首先看出幾何關系滿足什么條件,其次用坐標表示這些幾何關系,本題的關鍵就是如果是平行四邊形那么對角線互相平分,即,分別用方程聯立求兩個坐標,最后求斜率.20.(1);(2)不存在,理由見解析【答案解析】
(1)寫出,根據,斜率乘積為-1,建立等量關系求解離心率;(2)寫出直線AB的方程,根據韋達定理求出點B的坐標,計算出弦長,根據垂直關系同理可得,利用等式即可得解.【題目詳解】(1)由題可得,過點作直線交橢圓于點,且,直線交軸于點.點為橢圓的右頂點時,的坐標為,即,,化簡得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯立得:,設B的橫坐標,根據韋達定理,即,,所以,同理可得若存在使得成立,則,化簡得:,,此方程無解,所以不存在使得成立.【答案點睛】此題考查求橢圓離心率,根據直線與橢圓的位置關系解決弦長問題,關鍵在于熟練掌握解析幾何常用方法,尤其是韋達定理在解決解析幾何問題中的應用.21.(Ⅰ)或(Ⅱ)12【答案解析】
(1)先設數列的公比為,根據題中條件求出公比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 暑期實踐活動活動方案
- 最佳酒會抽獎活動方案
- 機關雙提升活動方案
- 棗園廣場活動方案
- 普通話表演中心活動方案
- 服裝中秋門店活動方案
- 暖冬書香活動方案
- 村干部一下三民活動方案
- 暑假售票活動方案
- 杭州娛樂活動策劃方案
- 2025屆上海市閔行區七下數學期末學業水平測試模擬試題含解析
- 安全大講堂教學課件
- 靜電放電(ESD)及其防護措施培訓課件
- 社區干事考試試題及答案
- 2025年建筑工程管理考試試題及答案
- 2025年廣西南寧賓陽縣昆侖投資集團有限公司招聘筆試參考題庫含答案解析
- DB11∕T045-2025醫學實驗室質量與技術要求
- 工程造價復審報告書范文
- 《星形膠質細胞》課件
- SAP S4HANA 用戶操作手冊-成本控制CO操作手冊-002-訂單成本核算
- 幼兒園2025-2026學年度第一學期園本培訓計劃
評論
0/150
提交評論