




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題08數(shù)列/r/n一、選擇題部分/r/n1/r/n./r/n(2021?高考全國甲卷/r/n?理/r/nT7)/r/n等比數(shù)列/r/n的公比為/r/nq/r/n,前/r/nn/r/n項和為/r/n,設(shè)甲:/r/n,乙:/r/n是遞增數(shù)列,則()/r/nA.甲是乙的充分條件但不是必要條件/r/nB.甲是乙的必要條件但不是充分條件/r/nC.甲是乙的充要條件/r/nD.甲既不是乙的充分條件也不是乙的必要條件/r/nB/r/n./r/n當(dāng)/r/n時,通過舉反例說明甲不是乙的充分條件;當(dāng)/r/n是遞增數(shù)列時,必有/r/n成立即可說明/r/n成立,則甲是乙的必要條件,即可選出答案./r/n由題,當(dāng)數(shù)列為/r/n時,滿足/r/n,/r/n但是/r/n不是遞增數(shù)列,所以甲不是乙的充分條件./r/n若/r/n是遞增數(shù)列,則必有/r/n成立,若/r/n不成立,則會出現(xiàn)一正一負(fù)的情況,是矛盾的,則/r/n成立,所以甲是乙的必要條件./r/n故選/r/nB/r/n./r/n2/r/n.(2021?浙江卷?T10)/r/n已知數(shù)列/r/n滿足/r/n./r/n記數(shù)列/r/n的前/r/nn/r/n項和為/r/n,則()/r/nA/r/n B./r/n C./r/n D./r/nA/r/n./r/n因為/r/n,所以/r/n,/r/n./r/n由/r/n,即/r/n根據(jù)累加法可得,/r/n,當(dāng)且僅當(dāng)/r/n時取等號,/r/n,/r/n由累乘法可得/r/n,當(dāng)且僅當(dāng)/r/n時取等號,/r/n由裂項求和法得:/r/n所以/r/n,即/r/n./r/n故選/r/nA/r/n./r/n3/r/n.(2021?江蘇鹽城三模?T/r/n5/r/n)/r/n已知數(shù)列/r/neq/r/n{/r/na/r/n\/r/ns/r/n\/r/ndo/r/n(/r/nn/r/n)}/r/n的通項公式為/r/neqa/r/n\/r/ns/r/n\/r/ndo/r/n(/r/nn/r/n)/r/n=/r/n\/r/nf/r/n(/r/nn/r/n,(/r/nn/r/n+/r/n1)!)/r/n,則其前/r/nn/r/n項和為/r/nA/r/n./r/neq/r/n1/r/n-/r/n\/r/nf/r/n(1,(/r/nn/r/n+/r/n1)!)/r/nB/r/n./r/neq/r/n1/r/n-/r/n\/r/nf/r/n(1,/r/nn/r/n!)/r/nC/r/n./r/neq/r/n2/r/n-/r/n\/r/nf/r/n(1,/r/nn/r/n!)/r/nD/r/n./r/neq/r/n2/r/n-/r/n\/r/nf/r/n(1,(/r/nn/r/n+/r/n1)!)/r/nA/r/n./r/n【考點】數(shù)列的求和:裂項相消法/r/n由題意可知,/r/neqa/r/n\/r/ns/r/n\/r/ndo/r/n(/r/nn/r/n)/r/n=/r/n\/r/nf/r/n(/r/nn/r/n,(/r/nn/r/n+/r/n1)!)/r/n=/r/neq/r/n\/r/nf/r/n(/r/nn/r/n+/r/n1/r/n-/r/n1,(/r/nn/r/n+/r/n1)!)/r/n=/r/neq/r/n\/r/nf/r/n(1,/r/nn/r/n!)/r/n-/r/neq/r/n\/r/nf/r/n(1,(/r/nn/r/n+/r/n1)!)/r/n,所以/r/nS/r/nn/r/n=/r/n1/r/n-/r/neq/r/n\/r/nf/r/n(1,2!)/r/n+/r/neq/r/n\/r/nf/r/n(1,2!)/r/n-/r/neq/r/n\/r/nf/r/n(1,3!)/r/n+/r/n…+/r/neq/r/n\/r/nf/r/n(1,/r/nn/r/n!)/r/n-/r/neq/r/n\/r/nf/r/n(1,(/r/nn/r/n+/r/n1)!)/r/n=/r/n1/r/n-/r/neq/r/n\/r/nf/r/n(1,(/r/nn/r/n+/r/n1)!)/r/n,故答案選/r/nA/r/n./r/n4/r/n.(2021?江蘇鹽城三模?T/r/n10/r/n)設(shè)/r/n數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/neqS/r/n\/r/ns/r/n\/r/ndo/r/n(/r/nn/r/n)/r/n,若/r/neqa/r/n\/r/ns/r/n\/r/ndo/r/n(/r/nn/r/n)/r/n+/r/nS/r/n\/r/ns/r/n\/r/ndo/r/n(/r/nn/r/n)/r/n=/r/nAn/r/n\/r/ns/r/n\/r/nup/r/n6(2)/r/n+/r/nBn/r/n+/r/nC/r/n,則下列說法中正確的有/r/nA/r/n.存在/r/nA/r/n,/r/nB/r/n,/r/nC/r/n使得/r/n{/r/na/r/nn/r/n}/r/n是等差數(shù)列/r/nB/r/n.存在/r/nA/r/n,/r/nB/r/n,/r/nC/r/n使得/r/n{/r/na/r/nn/r/n}/r/n是等比數(shù)列/r/nC/r/n.對任意/r/nA/r/n,/r/nB/r/n,/r/nC/r/n都有/r/n{/r/na/r/nn/r/n}/r/n一定是等差數(shù)列或等比數(shù)列/r/nD/r/n.存在/r/nA/r/n,/r/nB/r/n,/r/nC/r/n使得/r/n{/r/na/r/nn/r/n}/r/n既不是等差數(shù)列也不是等比數(shù)列/r/nABD/r/n./r/n【考點】等差與等比數(shù)列的綜合應(yīng)用/r/n由題意可知,對于選項/r/nA/r/n,取/r/nA/r/n=/r/n0/r/n,/r/nB/r/n=/r/nC/r/n=/r/n1/r/n,則有/r/na/r/nn/r/n+/r/nS/r/nn/r/n=/r/nn/r/n+/r/n1/r/n,此時可得到/r/na/r/nn/r/n=/r/n1/r/n,即/r/n{/r/na/r/nn/r/n}/r/n是等差數(shù)列,所以選項/r/nA/r/n正確;對于選項/r/nB/r/n,取/r/nA/r/n=/r/n0/r/n,/r/nB/r/n=/r/n0/r/n,/r/nC/r/n=/r/n1/r/n,則有/r/na/r/nn/r/n+/r/nS/r/nn/r/n=/r/n1/r/n,所以/r/nn/r/n≥/r/n2/r/n時,/r/na/r/nn/r/n-/r/n1/r/n+/r/nS/r/nn/r/n-/r/n1/r/n=/r/n1/r/n,兩式相減可得/r/n2/r/na/r/nn/r/n=/r/na/r/nn/r/n-/r/n1/r/n,即數(shù)列/r/n{/r/na/r/nn/r/n}/r/n是等比數(shù)列,所以選項/r/nB/r/n正確;對于選項/r/nCD/r/n,取/r/nA/r/n=/r/nC/r/n=/r/n0/r/n,/r/nB/r/n=/r/n2/r/n,則有/r/na/r/nn/r/n+/r/nS/r/nn/r/n=/r/n2/r/nn/r/n,所以/r/nn/r/n≥/r/n2/r/n時,/r/na/r/nn/r/n-/r/n1/r/n+/r/nS/r/nn/r/n-/r/n1/r/n=/r/n2(/r/nn/r/n-/r/n1)/r/n,兩式相減可得/r/na/r/nn/r/n=/r/nEQ/r/n\/r/nF/r/n(1,2)/r/na/r/nn/r/n-/r/n1/r/n+/r/n1/r/n,即/r/na/r/nn/r/n-/r/n2/r/n=/r/nEQ/r/n\/r/nF/r/n(1,2)/r/n(/r/na/r/nn/r/n-/r/n1/r/n-/r/n2)/r/n,即數(shù)列/r/n{/r/na/r/nn/r/n-/r/n2}/r/n是以/r/nEQ/r/n\/r/nF/r/n(1,2)/r/n為公比的等比數(shù)列,所以/r/n{/r/na/r/nn/r/n}/r/n既不是等差數(shù)列也不是等比數(shù)列,所以選項/r/nC/r/n錯誤,選項/r/nD/r/n正確;綜上,答案選/r/nABD/r/n./r/n5/r/n.(2021?河南鄭州三模?理T/r/n5/r/n)/r/n已知等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的公差不為零,且/r/na/r/n3/r/n2/r/n=/r/na/r/n1/r/na/r/n7/r/n,/r/nS/r/nn/r/n為其前/r/nn/r/n項和,則/r/n=()/r/nA/r/n./r/n /r/nB/r/n./r/n /r/nC/r/n./r/n /r/nD/r/n./r/nn/r/n(/r/nn/r/n﹣/r/n1/r/n)/r/nA/r/n./r/n設(shè)等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的公差為/r/nd/r/n≠/r/n0/r/n,∵/r/na/r/n3/r/n2/r/n=/r/na/r/n1/r/na/r/n7/r/n,/r/n∴/r/n=/r/na/r/n1/r/n(/r/na/r/n1/r/n+6/r/nd/r/n),化為:/r/na/r/n1/r/n=/r/n2/r/nd/r/n,/r/n∴/r/nS/r/nn/r/n=/r/nna/r/n1/r/n+/r/n×/r/n=/r/na/r/n1/r/n,/r/n則/r/n=/r/n./r/n6/r/n.(2021?河南焦作三模?理T/r/n4/r/n)/r/n已知公比大于/r/n1/r/n的等比數(shù)列/r/n{/r/na/r/nn/r/n}/r/n滿足/r/na/r/n2/r/na/r/nm/r/n=/r/na/r/n6/r/na/r/nn/r/n,/r/na/r/nm/r/n2/r/n=/r/na/r/n6/r/na/r/n10/r/n,則/r/nm/r/n+/r/nn/r/n=()/r/nA/r/n./r/n4/r/n /r/nB/r/n./r/n8/r/n /r/nC/r/n./r/n12/r/n /r/nD/r/n./r/n16/r/nC/r/n./r/n∵/r/na/r/n2/r/na/r/nm/r/n=/r/na/r/n6/r/na/r/nn/r/n,/r/na/r/nm/r/n2/r/n=/r/na/r/n6/r/na/r/n10/r/n,公比/r/nq/r/n>/r/n1/r/n,/r/n∴由等比數(shù)列的性質(zhì)可得:/r/nm/r/n=/r/n8/r/n,/r/nn/r/n=/r/n4/r/n,/r/n∴/r/nm/r/n+/r/nn/r/n=/r/n12/r/n./r/n7/r/n.(2021?重慶名校聯(lián)盟三模?T/r/n6/r/n.)在/r/n我國古代著名的數(shù)學(xué)專著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增一十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.問:幾日相逢?()/r/nA/r/n./r/n8/r/n日/r/n /r/nB/r/n./r/n9/r/n日/r/n /r/nC/r/n./r/n12/r/n日/r/n /r/nD/r/n./r/n16/r/n日/r/nB/r/n./r/n由題可知,良馬每日行程/r/na/r/nn/r/n構(gòu)成一個首項為/r/n103/r/n,公差/r/n13/r/n的等差數(shù)列,/r/n駑馬每日行程/r/nb/r/nn/r/n構(gòu)成一個首項為/r/n97/r/n,公差為﹣/r/n0.5/r/n的等差數(shù)列,/r/n則/r/na/r/nn/r/n=/r/n103+13/r/n(/r/nn/r/n﹣/r/n1/r/n)=/r/n13/r/nn/r/n+90/r/n,/r/nb/r/nn/r/n=/r/n97/r/n﹣/r/n0.5/r/n(/r/nn/r/n﹣/r/n1/r/n)=/r/n97.5/r/n﹣/r/n0.5/r/nn/r/n,/r/n則數(shù)列/r/n{/r/na/r/nn/r/n}/r/n與數(shù)列/r/n{/r/nb/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/n1125/r/n×/r/n2/r/n=/r/n2250/r/n,/r/n又∵數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/n×(/r/n103+13/r/nn/r/n+90/r/n)=/r/n×(/r/n193+13/r/nn/r/n),/r/n數(shù)列/r/n{/r/nb/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/n×(/r/n97+97.5/r/n﹣/r/n0.5/r/nn/r/n)=/r/n×(/r/n194.5/r/n﹣/r/nn/r/n),/r/n∴/r/n×(/r/n193+13/r/nn/r/n)/r/n+/r/n×(/r/n194.5/r/n﹣/r/nn/r/n)=/r/n2250/r/n,/r/n整理得:/r/n25/r/nn/r/n2/r/n+775/r/nn/r/n﹣/r/n9000/r/n=/r/n0/r/n,即/r/nn/r/n2/r/n+31/r/nn/r/n﹣/r/n360/r/n=/r/n0/r/n,/r/n解得:/r/nn/r/n=/r/n9/r/n或/r/nn/r/n=﹣/r/n40/r/n(舍),即九日相逢./r/n8/r/n.(2021?安徽蚌埠三模?文T/r/n4/r/n.)/r/n已知等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/nS/r/nn/r/n,/r/nS/r/n1/r/n=/r/n1/r/n,/r/nS/r/n5/r/n=/r/n25/r/n,則/r/n=()/r/nA/r/n./r/n3/r/n /r/nB/r/n./r/n6/r/n /r/nC/r/n./r/n9/r/n /r/nD/r/n./r/n12/r/nA/r/n./r/n因為等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n中,/r/na/r/n1/r/n=/r/nS/r/n1/r/n=/r/n1/r/n,/r/n所以/r/nS/r/n5/r/n=/r/n5+10/r/nd/r/n=/r/n25/r/n,/r/n所以/r/nd/r/n=/r/n2/r/n,則/r/n=/r/na/r/n1/r/n+/r/nd/r/n=/r/n3/r/n./r/n9/r/n.(2021?貴州畢節(jié)三模?文T/r/n9/r/n.)如/r/n圖,有甲、乙、丙三個盤子和放在甲盤子中的四塊大小不相同的餅,按下列規(guī)則把餅從甲盤全部移到乙盤中:/r/n①/r/n每次只能移動一塊餅;/r/n②/r/n較大的餅不能放在較小的餅上面,則最少需要移動的次數(shù)為()/r/nA/r/n./r/n7/r/n /r/nB/r/n./r/n8/r/n /r/nC/r/n./r/n15/r/n /r/nD/r/n./r/n16/r/nC/r/n./r/n假設(shè)甲盤中有/r/nn/r/n塊餅,從甲盤移動到乙盤至少需要/r/na/r/nn/r/n次,則/r/na/r/n1/r/n=/r/n1/r/n,/r/n當(dāng)/r/nn/r/n≥/r/n2/r/n時,可先將較大的餅不動,將剩余的/r/nn/r/n﹣/r/n1/r/n塊餅先移動到丙盤中,至少需要移動/r/na/r/nn/r/n﹣/r/n1/r/n次,再將最大的餅移動到乙盤,需要移動/r/n1/r/n次,/r/n最后將丙盤中所有的丙移動到乙盤中,至少需要移動/r/na/r/nn/r/n﹣/r/n1/r/n次,/r/n由上可知,/r/na/r/nn/r/n=/r/n2/r/na/r/nn/r/n﹣/r/n1/r/n+1/r/n,且/r/na/r/n1/r/n=/r/n1/r/n,/r/n所以/r/na/r/n2/r/n=/r/n2/r/na/r/n1/r/n+1/r/n=/r/n3/r/n,/r/na/r/n3/r/n=/r/n2/r/na/r/n2/r/n+1/r/n=/r/n7/r/n,/r/na/r/n4/r/n=/r/n2/r/na/r/n3/r/n+1/r/n=/r/n15/r/n,/r/n則最少需要移動的次數(shù)為/r/n15/r/n次./r/n1/r/n0/r/n.(2021?貴州畢節(jié)三模?文T/r/n5/r/n.)/r/n“干支紀(jì)年法”是中國歷法上自古以來使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序為:甲子、乙丑、丙寅、…、癸酉,甲戌、乙亥、丙子、…、癸未,甲申、乙酉、丙戌、…、癸巳,…,/r/n共得到/r/n60/r/n個組合,稱六十甲子,周而復(fù)始,無窮無盡./r/n2021/r/n年是“干支紀(jì)年法”中的辛丑年,那么/r/n2015/r/n年是“干支紀(jì)年法”中的()/r/nA/r/n.甲辰年/r/n /r/nB/r/n.乙巳年/r/n /r/nC/r/n.丙午年/r/n /r/nD/r/n.乙未年/r/nD/r/n./r/n由題意可知,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,/r/n子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”,/r/n2021/r/n年是“干支紀(jì)年法”中的辛丑年,則/r/n2020/r/n年為庚子,/r/n2019/r/n年為己亥,/r/n2018/r/n年為戊戌,/r/n2017/r/n年為丁酉,/r/n2016/r/n年為丙申,/r/n2015/r/n年為乙未./r/n1/r/n1/r/n.(2021?遼寧朝陽三模?T/r/n4/r/n.)跑/r/n步是一項有氧運動,通過跑步,我們能提高肌力,同時提高體內(nèi)的基礎(chǔ)代謝水平,加速脂肪的燃燒,養(yǎng)成易瘦體質(zhì).小林最近給自己制定了一個/r/n200/r/n千米的跑步健身計劃,他第一天跑了/r/n8/r/n千米,以后每天比前一天多跑/r/n0.5/r/n千米,則他要完成該計劃至少需要()/r/nA/r/n./r/n16/r/n天/r/n /r/nB/r/n./r/n17/r/n天/r/n /r/nC/r/n./r/n18/r/n天/r/n /r/nD/r/n./r/n19/r/n天/r/nB/r/n./r/n設(shè)需要/r/nn/r/n天完成計劃,由題意易知每天跑步的里程為,以/r/n8/r/n為首項,/r/n0.5/r/n為公差的等差數(shù)列,∴/r/n,/r/n∴/r/nn/r/n2/r/n+31/r/nn/r/n﹣/r/n800/r/n≥/r/n0/r/n,當(dāng)/r/nn/r/n=/r/n16/r/n時,/r/n16/r/n2/r/n+31/r/n×/r/n16/r/n﹣/r/n800/r/n</r/n0/r/n,/r/n當(dāng)/r/nn/r/n=/r/n17/r/n時,/r/n17/r/n2/r/n+17/r/n×/r/n31/r/n﹣/r/n800/r/n>/r/n0/r/n./r/n1/r/n2/r/n.(2021?河南濟(jì)源平頂山許昌三模?文T/r/n4/r/n.)“/r/n干支紀(jì)年法”是我國歷法的一種傳統(tǒng)紀(jì)年法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為”十天干”;子、丑、寅、卯、辰、巳、午、未、申、西、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序為甲子、乙丑、丙寅、……癸酉;甲戌、乙亥、丙子、…、癸未;甲申、乙酉、丙戌、…、癸巳;…,共得到/r/n60/r/n個組合,稱六十甲子,周而復(fù)始,無窮無盡./r/n2021/r/n年是“干支紀(jì)年法”中的辛丑年,那么/r/n2121/r/n年是“干支紀(jì)年法”中的()/r/nA/r/n.庚午年/r/n /r/nB/r/n.辛未年/r/n /r/nC/r/n.庚辰年/r/n /r/nD/r/n.辛巳年/r/nD/r/n./r/n天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;/r/n地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥,/r/n天干是以/r/n10/r/n為公差的等差數(shù)列,地支是以/r/n12/r/n為公差的等差數(shù)列,/r/n2021/r/n年是“干支紀(jì)年法”中的辛丑年,則/r/n2121/r/n的天干為辛,地支為巳/r/n./r/n1/r/n3/r/n.(2021?安徽宿州三模?理T/r/n8/r/n.)/r/n各項均為正數(shù)的等比數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/nS/r/nn/r/n,且/r/na/r/n1/r/na/r/n7/r/n=/r/n3/r/na/r/n4/r/n,/r/na/r/n2/r/n與/r/na/r/n3/r/n的等差中項為/r/n18/r/n,則/r/nS/r/n5/r/n=()/r/nA/r/n./r/n108/r/n /r/nB/r/n./r/n117/r/n /r/nC/r/n./r/n120/r/n /r/nD/r/n./r/n121/r/nD/r/n./r/n設(shè)等比數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的公比為/r/nq/r/n,/r/nq/r/n>/r/n0/r/n,由/r/na/r/n1/r/na/r/n7/r/n=/r/na/r/n4/r/n2/r/n=/r/n3/r/na/r/n4/r/n,可得/r/na/r/n4/r/n=/r/n3/r/n,即有/r/na/r/n1/r/nq/r/n3/r/n=/r/n3/r/n,由/r/na/r/n2/r/n與/r/na/r/n3/r/n的等差中項為/r/n18/r/n,可得/r/na/r/n2/r/n+/r/na/r/n3/r/n=/r/n36/r/n,即為/r/na/r/n1/r/nq/r/n+/r/na/r/n1/r/nq/r/n2/r/n=/r/n36/r/n,解得/r/na/r/n1/r/n=/r/n81/r/n,/r/nq/r/n=/r/n,/r/n則/r/nS/r/n5/r/n=/r/n=/r/n121/r/n./r/n1/r/n4/r/n.(2021?安徽宿州三模?文T/r/n5/r/n.)已/r/n知/r/n{/r/na/r/nn/r/n}/r/n為等差數(shù)列且/r/na/r/n1/r/n=/r/n1/r/n,/r/na/r/n4/r/n+/r/na/r/n9/r/n=/r/n24/r/n,/r/nS/r/nn/r/n為其前/r/nn/r/n項的和,則/r/nS/r/n12/r/n=()/r/nA/r/n./r/n142/r/n /r/nB/r/n./r/n143/r/n /r/nC/r/n./r/n144/r/n /r/nD/r/n./r/n145/r/nC/r/n./r/n解法一、等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n中,設(shè)公差為/r/nd/r/n,/r/n由/r/na/r/n1/r/n=/r/n1/r/n,/r/na/r/n4/r/n+/r/na/r/n9/r/n=/r/n24/r/n,/r/n得(/r/na/r/n1/r/n+3/r/nd/r/n)/r/n+/r/n(/r/na/r/n1/r/n+8/r/nd/r/n)=/r/n2/r/na/r/n1/r/n+11/r/nd/r/n=/r/n2+11/r/nd/r/n=/r/n24/r/n,/r/n解得/r/nd/r/n=/r/n2/r/n,/r/n所以/r/nS/r/n12/r/n=/r/n12/r/na/r/n1/r/n+/r/n×/r/n12/r/n×/r/n11/r/n×/r/n2/r/n=/r/n12/r/n×/r/n1+132/r/n=/r/n144/r/n./r/n解法二、等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n中,/r/na/r/n1/r/n=/r/n1/r/n,/r/na/r/n4/r/n+/r/na/r/n9/r/n=/r/n24/r/n,/r/n所以前/r/nn/r/n項的和/r/nS/r/n12/r/n=/r/n=/r/n6/r/n(/r/na/r/n4/r/n+/r/na/r/n9/r/n)=/r/n6/r/n×/r/n24/r/n=/r/n144/r/n./r/n1/r/n5/r/n.(2021?河南開封三模?文T/r/n7/r/n.)/r/n設(shè)數(shù)列/r/n{/r/na/r/nn/r/n}/r/n滿足/r/na/r/n1/r/n=/r/n1/r/n,/r/n,若/r/n,則/r/nn/r/n=()/r/nA/r/n./r/n4/r/n /r/nB/r/n./r/n5/r/n /r/nC/r/n./r/n6/r/n /r/nD/r/n./r/n7/r/nC/r/n./r/n根據(jù)題意,數(shù)列/r/n{/r/na/r/nn/r/n}/r/n滿足/r/na/r/n1/r/n=/r/n1/r/n,/r/n,/r/n則數(shù)列/r/n{/r/na/r/nn/r/n}/r/n是首項/r/na/r/n1/r/n=/r/n1/r/n,公比為/r/n的等比數(shù)列,/r/n若/r/n,即/r/na/r/n1/r/n(/r/na/r/n1/r/nq/r/n)(/r/na/r/n1/r/nq/r/n2/r/n)……(/r/na/r/n1/r/nq/r/nn/r/n﹣/r/n1/r/n)=(/r/na/r/n1/r/n)/r/nn/r/n×/r/n=/r/n=/r/n,解可得:/r/nn/r/n=/r/n6/r/n或﹣/r/n5/r/n(舍)/r/n./r/n1/r/n6/r/n.(2021?四川瀘州三模?理T/r/n6/r/n.)已/r/n知/r/nS/r/nn/r/n為等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的前/r/nn/r/n項和,若/r/na/r/n2/r/n=/r/n15/r/n,/r/nS/r/n5/r/n=/r/n65/r/n,則/r/na/r/n1/r/n+/r/na/r/n4/r/n=()/r/nA/r/n./r/n24/r/n /r/nB/r/n./r/n26/r/n /r/nC/r/n./r/n28/r/n /r/nD/r/n./r/n30/r/nC/r/n./r/n由題意/r/nS/r/n5/r/n=/r/n5/r/na/r/n3/r/n=/r/n65/r/n,/r/na/r/n3/r/n=/r/n13/r/n,所以/r/na/r/n1/r/n+/r/na/r/n4/r/n=/r/na/r/n2/r/n+/r/na/r/n3/r/n=/r/n28/r/n./r/n1/r/n7/r/n.(2021?江蘇常數(shù)三模?T/r/n12/r/n.)/r/n斐波那契,公元/r/n13/r/n世紀(jì)意大利數(shù)學(xué)家.他在自己的著作《算盤書》中記載著這樣一個數(shù)列:/r/n1/r/n,/r/n1/r/n,/r/n2/r/n,/r/n3/r/n,/r/n5/r/n,/r/n8/r/n,/r/n13/r/n,/r/n21/r/n,/r/n34/r/n,/r/n?/r/n,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和,這就是著名的斐波那契數(shù)列.斐波那契數(shù)列與代數(shù)和幾何都有著不可分割的聯(lián)系.現(xiàn)有一段長為/r/na/r/n米的鐵絲,需要截成/r/nn/r/n(/r/nn/r/n>/r/n2/r/n)段,每段的長度不小于/r/n1/r/nm/r/n,且其中任意三段都不能構(gòu)成三角形,若/r/nn/r/n的最大值為/r/n10/r/n,則/r/na/r/n的值可能是()/r/nA/r/n./r/n100/r/n /r/nB/r/n./r/n143/r/n /r/nC/r/n./r/n200/r/n /r/nD/r/n./r/n256/r/nBC/r/n./r/n由題意,一段長為/r/na/r/n米的鐵絲,截成/r/nn/r/n段,且其中任意三段都不能構(gòu)成三角形,/r/n當(dāng)/r/nn/r/n取最大值時,每段長度從小到大排列正好為斐波那契數(shù)列,/r/n而數(shù)列的前/r/n10/r/n項和為:/r/n1+1+2+3+5+8+13+21+34+55/r/n=/r/n143/r/n,/r/n前/r/n11/r/n項和為:/r/n1+1+2+3+5+8+13+21+34+55+89/r/n=/r/n232/r/n,/r/n∴只需/r/n143/r/n≤/r/na/r/n</r/n232/r/n,/r/nBC/r/n均符合要求./r/n1/r/n8/r/n.(2021?上海浦東新區(qū)三模?T/r/n16/r/n.)已/r/n知函數(shù)/r/nf/r/n(/r/nx/r/n)=/r/nsin/r/nx/r/n,各項均不相等的數(shù)列/r/n{/r/na/r/nn/r/n}/r/n滿足/r/n|/r/na/r/ni/r/n|/r/n≤/r/n(/r/ni/r/n=/r/n1/r/n,/r/n2/r/n,…/r/nn/r/n),記/r/nG/r/n(/r/nn/r/n)=/r/n./r/n①/r/n若/r/na/r/nn/r/n=(﹣/r/n)/r/nn/r/n,則/r/nG/r/n(/r/n2000/r/n)>/r/n0/r/n;/r/n②/r/n若/r/n{/r/na/r/nn/r/n}/r/n是等差數(shù)列,且/r/na/r/n1/r/n+/r/na/r/n2/r/n+/r/n…/r/n+/r/na/r/nn/r/n≠/r/n0/r/n,則/r/nG/r/n(/r/nn/r/n)>/r/n0/r/n對/r/nn/r/n∈/r/nN/r/n*/r/n恒成立.關(guān)于上述兩個命題,以下說法正確的是()/r/nA/r/n./r/n①②/r/n均正確/r/n /r/nB/r/n./r/n①②/r/n均錯誤/r/n /r/nC/r/n./r/n①/r/n對,/r/n②/r/n錯/r/n /r/nD/r/n./r/n①/r/n錯,/r/n②/r/n對/r/nA/r/n./r/nf/r/n(/r/nx/r/n)=/r/nsin/r/nx/r/n在/r/n[/r/n﹣/r/n]/r/n上為奇函數(shù)且單調(diào)遞增,/r/n①/r/n:/r/na/r/n2/r/nk/r/n﹣/r/n1/r/n+/r/na/r/n2/r/nk/r/n</r/n0/r/n(/r/nk/r/n∈/r/nN/r/n*/r/n)可得/r/na/r/n2/r/nk/r/n﹣/r/n1/r/n<﹣/r/na/r/n2/r/nk/r/n,則/r/nf/r/n(/r/na/r/n2/r/nk/r/n﹣/r/n1/r/n)</r/nf/r/n(﹣/r/na/r/n2/r/nk/r/n)</r/nf/r/n(﹣/r/na/r/n2/r/nk/r/n)=﹣/r/nf/r/n(/r/na/r/n2/r/nk/r/n),/r/n所以/r/nf/r/n(/r/na/r/n2/r/nk/r/n﹣/r/n1/r/n)/r/n+/r/nf/r/n(/r/na/r/n2/r/nk/r/n)</r/n0/r/n</r/n0/r/n,則/r/na/r/n1/r/n+/r/na2............/r/n+/r/na/r/n2000/r/n</r/n0/r/n,/r/nf/r/n(/r/na/r/n1/r/n)/r/n+/r/nf/r/n(/r/na/r/n2/r/n)/r/n...../r/n.....+/r/nf/r/n(/r/na/r/n2000/r/n)/r/n+.....+/r/nf/r/n(/r/na/r/n2000/r/n)</r/n0/r/n,故/r/nG/r/n(/r/n2000/r/n)>/r/n0/r/n,/r/n①/r/n正確,/r/n②/r/n:/r/n{/r/na/r/nn/r/n}/r/n為等差數(shù)列,當(dāng)/r/na/r/n1/r/n+/r/na/r/n2/r/n+.....+/r/na/r/nn/r/n>/r/n0/r/n時,/r/n若/r/nn/r/n為偶數(shù),/r/na/r/n>/r/n0/r/n,/r/na/r/n1/r/n>﹣/r/na/r/nn/r/n可得/r/nf/r/n(/r/na/r/n1/r/n)>/r/nf/r/n(﹣/r/na/r/nn/r/n)=﹣/r/nf/r/n(/r/na/r/nn/r/n),則/r/nf/r/n(/r/na/r/n1/r/n)/r/n+/r/nf/r/n(/r/na/r/nn/r/n)>/r/n0/r/n,/r/n同理可得:/r/nf/r/n(/r/na/r/n2/r/n)/r/n+/r/nf/r/n(/r/na/r/nn/r/n﹣/r/n1/r/n)>/r/n0/r/n,/r/n......./r/nf/r/n(/r/na/r/n)/r/n+/r/nf/r/n(/r/na/r/n)>/r/n0/r/n,所以/r/nG/r/n(/r/nn/r/n)>/r/n0/r/n,/r/n若/r/nn/r/n為奇數(shù),/r/na/r/n1/r/n+/r/na/r/nn/r/n=/r/na/r/n2/r/n+/r/na/r/nn/r/n﹣/r/n1/r/n=/r/n....../r/n=/r/n2/r/na/r/n>/r/n0/r/n,/r/nf/r/n(/r/na/r/n1/r/n)/r/n+/r/nf/r/n(/r/na/r/nn/r/n)>/r/n0/r/n,/r/nf/r/n(/r/na/r/n2/r/n)/r/n+/r/nf/r/n(/r/na/r/nn/r/n﹣/r/n1/r/n)>/r/n0/r/n,/r/n...../r/n,/r/nf/r/n(/r/na/r/n)>/r/n0/r/n,所以/r/nG/r/n(/r/nn/r/n)>/r/n0/r/n,/r/n當(dāng)/r/na/r/n1/r/n+/r/na/r/n2/r/n+.....+/r/na/r/nn/r/n</r/n0/r/n時,同理可證/r/nG/r/n(/r/nn/r/n)>/r/n0/r/n,/r/n②/r/n正確/r/n./r/n1/r/n9/r/n.(2021?湖南三模?T/r/n5/r/n.)/r/n《周髀算經(jīng)》是我國古代的天文學(xué)和數(shù)學(xué)著作,其中有一個問題大意如下:一年有二十四個節(jié)氣,每個節(jié)氣晷長損益相同(即太陽照射物體的影子長度增加和減少的大小相同).二十四個節(jié)氣及晷長變化如圖所示,若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:一丈等于十尺,一尺等于十寸),則立秋晷長為()/r/nA/r/n.五寸/r/n /r/nB/r/n.二尺五寸/r/n /r/nC/r/n.三尺五寸/r/n /r/nD/r/n.四尺五寸/r/nD/r/n./r/n設(shè)從夏至到冬至,每個節(jié)氣晷長為/r/na/r/nn/r/n,則/r/na/r/n1/r/n=/r/n15/r/n,冬至晷長/r/na/r/n13/r/n=/r/n135/r/n,/r/n由題意得/r/n{/r/na/r/nn/r/n}/r/n為等差數(shù)列,則/r/nd/r/n=/r/n=/r/n10/r/n,故/r/na/r/n4/r/n=/r/na/r/n1/r/n+3/r/nd/r/n=/r/n15+30/r/n=/r/n45/r/n./r/n20/r/n.(2021?江西南昌三模?理T/r/n5/r/n.)已/r/n知公差不為/r/n0/r/n的等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n滿足/r/na/r/n5/r/n2/r/n+/r/na/r/n6/r/n2/r/n=/r/na/r/n7/r/n2/r/n+/r/na/r/n8/r/n2/r/n,則()/r/nA/r/n./r/na/r/n6/r/n=/r/n0/r/n /r/nB/r/n./r/na/r/n7/r/n=/r/n0/r/n /r/nC/r/n./r/nS/r/n12/r/n=/r/n0/r/n /r/nD/r/n./r/nS/r/n13/r/n=/r/n0/r/nC/r/n./r/n因為公差不為/r/n0/r/n的等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n滿足/r/na/r/n5/r/n2/r/n+/r/na/r/n6/r/n2/r/n=/r/na/r/n7/r/n2/r/n+/r/na/r/n8/r/n2/r/n,/r/n所以/r/na/r/n8/r/n2/r/n﹣/r/na/r/n5/r/n2/r/n+/r/na/r/n7/r/n2/r/n﹣/r/na/r/n6/r/n2/r/n=/r/n0/r/n,/r/n所以(/r/na/r/n8/r/n﹣/r/na/r/n5/r/n)(/r/na/r/n8/r/n+/r/na/r/n5/r/n)/r/n+/r/n(/r/na/r/n7/r/n﹣/r/na/r/n6/r/n)(/r/na/r/n7/r/n+/r/na/r/n6/r/n)=/r/n0/r/n,/r/n即/r/n3/r/nd/r/n(/r/na/r/n8/r/n+/r/na/r/n5/r/n)/r/n+/r/nd/r/n(/r/na/r/n7/r/n+/r/na/r/n6/r/n)=/r/n0/r/n,/r/n因為/r/nd/r/n≠/r/n0/r/n,/r/n所以/r/n3/r/n(/r/na/r/n8/r/n+/r/na/r/n5/r/n)/r/n+/r/n(/r/na/r/n7/r/n+/r/na/r/n6/r/n)=/r/n0/r/n,/r/n由等差數(shù)列的性質(zhì)得/r/n4/r/n(/r/na/r/n1/r/n+/r/na/r/n12/r/n)=/r/n0/r/n,即/r/na/r/n1/r/n+/r/na/r/n12/r/n=/r/n0/r/n,/r/n所以/r/nS/r/n12/r/n=/r/n0/r/n./r/n2/r/n1.(2021?江西上饒三模?理T/r/n12/r/n.)數(shù)/r/n列/r/n{/r/na/r/nn/r/n}/r/n是以/r/na/r/n為首項,/r/nq/r/n為公比的等比數(shù)列,數(shù)列/r/n{/r/nb/r/nn/r/n}/r/n滿足/r/nb/r/nn/r/n=/r/n1+/r/na/r/n1/r/n+/r/na/r/n2/r/n+/r/n…/r/n+/r/na/r/nn/r/n(/r/nn/r/n=/r/n1/r/n,/r/n2/r/n,…),數(shù)列/r/n{c/r/nn/r/n}/r/n滿足/r/nc/r/nn/r/n=/r/n2+/r/nb/r/n1/r/n+/r/nb/r/n2/r/n+/r/n…/r/n+/r/nb/r/nn/r/n(/r/nn/r/n=/r/n1/r/n,/r/n2/r/n,…).若/r/n{c/r/nn/r/n}/r/n為等比數(shù)列,則/r/na/r/n+/r/nq/r/n=()/r/nA/r/n./r/n /r/nB/r/n./r/n3/r/n /r/nC/r/n./r/n /r/nD/r/n./r/n6/r/nB/r/n./r/n數(shù)列/r/n{/r/na/r/nn/r/n}/r/n是以/r/na/r/n為首項,/r/nq/r/n為公比的等比數(shù)列,/r/na/r/nn/r/n=/r/naq/r/nn/r/n﹣/r/n1/r/n,/r/n則/r/nb/r/nn/r/n=/r/n1+/r/na/r/n1/r/n+/r/na/r/n2/r/n+/r/n…/r/n+/r/na/r/nn/r/n=/r/n1+/r/n=/r/n1+/r/n﹣/r/n,/r/n則/r/nc/r/nn/r/n=/r/n2+/r/nb/r/n1/r/n+/r/nb/r/n2/r/n+/r/n…/r/n+/r/nb/r/nn/r/n=/r/n2+/r/n(/r/n1+/r/n)/r/nn/r/n﹣/r/n×/r/n=/r/n2/r/n﹣/r/n+/r/nn/r/n+/r/n,要使/r/n{c/r/nn/r/n}/r/n為等比數(shù)列,則/r/n,解得:/r/n,∴/r/na/r/n+/r/nq/r/n=/r/n3/r/n./r/n22/r/n.(2021?安徽馬鞍山三模?理T/r/n10/r/n.)國/r/n際數(shù)學(xué)教育大會(/r/nICME/r/n)是由國際數(shù)學(xué)教育委員會主辦的國際數(shù)學(xué)界最重要的會議,每四年舉辦一次,至今共舉辦了十三屆,第十四屆國際數(shù)學(xué)教育大會于/r/n2021/r/n年上海舉行,華東師大向全世界發(fā)出了數(shù)學(xué)教育理論發(fā)展與實踐經(jīng)驗分享的邀約,如圖甲是第七屆國際數(shù)學(xué)家大會(簡稱/r/nICME/r/n﹣/r/n7/r/n)的會徽圖案,會徽的主題圖案是由圖乙的一連串直角三角形演化而成的./r/n其中已知:/r/nOA/r/n1/r/n=/r/nA/r/n1/r/nA/r/n2/r/n=/r/nA/r/n2/r/nA/r/n3/r/n=/r/nA/r/n3/r/nA/r/n4/r/n=/r/nA/r/n4/r/nA/r/n5/r/n=/r/nA/r/n5/r/nA/r/n6/r/n=/r/nA/r/n6/r/nA/r/n7/r/n=/r/nA/r/n7/r/nA/r/n8/r/n=/r/n?/r/n=/r/n1/r/n,/r/nA/r/n1/r/n,/r/nA/r/n2/r/n,/r/nA/r/n3/r/n,/r/n?/r/n,為直角頂點,設(shè)這些直角三角形的周長和面積依次從小到大組成的數(shù)列分別為/r/n{/r/nl/r/nn/r/n}/r/n,/r/n{/r/nS/r/nn/r/n}/r/n,則關(guān)于此兩個數(shù)列敘述錯誤的是()/r/nA/r/n./r/n{/r/nS/r/nn/r/n2/r/n}/r/n是等差數(shù)列/r/n /r/nB/r/n./r/n /r/nC/r/n./r/n /r/nD/r/n./r/nl/r/nn/r/n﹣/r/n1/r/n=/r/n2/r/nS/r/nn/r/n+2/r/nS/r/nn/r/n+1/r/nC/r/n./r/n由/r/nOA/r/n1/r/n=/r/nA/r/n1/r/nA/r/n2/r/n=/r/nA/r/n2/r/nA/r/n3/r/n=/r/nA/r/n3/r/nA/r/n4/r/n=/r/nA/r/n4/r/nA/r/n5/r/n=/r/nA/r/n5/r/nA/r/n6/r/n=/r/nA/r/n6/r/nA/r/n7/r/n=/r/nA/r/n7/r/nA/r/n8/r/n=/r/n?/r/n=/r/n1/r/n,/r/n得/r/nOA/r/n2/r/n=/r/n,/r/n,/r/n?/r/n,/r/n故/r/n,∴/r/nl/r/nn/r/n=/r/nOA/r/nn/r/n+/r/nA/r/nn/r/nA/r/nn/r/n+1/r/n+/r/nOA/r/nn/r/n+1/r/n=/r/n,/r/n①/r/nS/r/nn/r/n=/r/n=/r/n,/r/n對于/r/nA/r/n,/r/nS/r/nn/r/n2/r/n=/r/n,∴/r/n{/r/nS/r/nn/r/n2/r/n}/r/n是等差數(shù)列,所以/r/nA/r/n正確;/r/n對于/r/nB/r/n,由/r/n①/r/n可知,/r/nB/r/n正確;/r/n對于/r/nC/r/n,/r/nl/r/nn/r/n﹣/r/nl/r/nn/r/n﹣/r/n1/r/n=/r/n﹣(/r/n)=/r/n,所以/r/nC/r/n錯誤;/r/n對于/r/nD/r/n,/r/nl/r/nn/r/n﹣/r/n1/r/n=/r/n,/r/n2/r/nS/r/nn/r/n+2/r/nS/r/nn/r/n+1/r/n=/r/n=/r/nl/r/nn/r/n﹣/r/n1/r/n,所以/r/nD/r/n正確./r/n23/r/n.(2021?安徽馬鞍山三模?文T/r/n8/r/n.)在/r/n天然氣和煤氣還未普及時,農(nóng)民通常會用水稻秸稈作為生火做飯的材料.每年水稻收割結(jié)束之后,農(nóng)民們都會把水稻秸稈收集起來,然后堆成如圖的草堆,供生火做飯使用.通常他們堆草堆的時候都是先把秸稈先捆成一捆一捆的,然后堆成下面近似成一個圓柱體,上面近似成一個圓錐體的形狀.假設(shè)圓柱體堆了/r/n7/r/n層,每層所用的小捆草數(shù)量相同,上面收小時,每層小捆草數(shù)量是下一層的/r/n倍.若共用/r/n255/r/n捆,最上一層只有一捆,則草堆自上往下共有幾層()/r/nA/r/n./r/n13/r/n /r/nB/r/n./r/n12/r/n /r/nC/r/n./r/n11/r/n /r/nD/r/n./r/n10/r/nB/r/n./r/n設(shè)圓錐體有/r/nn/r/n層,由題意可知最上面一層只有一捆,/r/n所以第/r/nn/r/n層有/r/n1/r/n×/r/n2/r/nn/r/n﹣/r/n1/r/n捆,圓錐體的總捆數(shù)為/r/n=/r/n2/r/nn/r/n﹣/r/n1/r/n,/r/n圓柱體堆了/r/n7/r/n層,總捆數(shù)為/r/n7/r/n×/r/n2/r/nn/r/n﹣/r/n1/r/n,/r/n草堆的總捆數(shù)為/r/n7/r/n×/r/n2/r/nn/r/n﹣/r/n1/r/n+2/r/nn/r/n﹣/r/n1/r/n﹣/r/n2/r/nn/r/n﹣/r/n1/r/n=/r/n255/r/n,/r/n解得/r/nn/r/n=/r/n6/r/n,所以自下往上共有/r/n6+7/r/n﹣/r/n1/r/n=/r/n12/r/n層/r/n./r/n24/r/n.(2021?安徽馬鞍山三模?理T/r/n4/r/n.)已/r/n知等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n中,/r/na/r/n2/r/n+/r/na/r/n14/r/n=/r/n18/r/n,/r/na/r/n2/r/n=/r/n3/r/n,則/r/na/r/n10/r/n=()/r/nA/r/n./r/n10/r/n /r/nB/r/n./r/n11/r/n /r/nC/r/n./r/n12/r/n /r/nD/r/n./r/n13/r/nB/r/n./r/n在等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n中,由/r/na/r/n2/r/n+/r/na/r/n14/r/n=/r/n18/r/n,得/r/n2/r/na/r/n8/r/n=/r/na/r/n2/r/n+/r/na/r/n14/r/n=/r/n18/r/n,則/r/na/r/n8/r/n=/r/n9/r/n,/r/n又/r/na/r/n2/r/n=/r/n3/r/n,∴/r/n,∴/r/na/r/n10/r/n=/r/na/r/n8/r/n+2/r/nd/r/n=/r/n9+2/r/n×/r/n1/r/n=/r/n11/r/n./r/n25/r/n.(2021?江西九江二模?理T/r/n9/r/n.)古/r/n希臘畢達(dá)哥拉斯學(xué)派認(rèn)為數(shù)是萬物的本源,因此極為重視數(shù)的理論研究,他們常把數(shù)描繪成沙灘上的沙?;蛐∈?,并將它們排列成各種形狀進(jìn)行研究.形數(shù)就是指平面上各種規(guī)則點陣所對應(yīng)的點數(shù),是畢哥拉斯學(xué)派最早研究的重要內(nèi)容之一.如圖是三角形數(shù)和四邊形數(shù)的前四個數(shù),若三角形數(shù)組成數(shù)列/r/n{/r/na/r/nn/r/n}/r/n,四邊形數(shù)組成數(shù)列/r/n{/r/nb/r/nn/r/n}/r/n,記/r/nc/r/nn/r/n=/r/n,則數(shù)列/r/n{c/r/nn/r/n}/r/n的前/r/n10/r/n項和為()/r/nA/r/n./r/n /r/nB/r/n./r/n /r/nC/r/n./r/n /r/nD/r/n./r/nD/r/n./r/n由題意可得,/r/n,/r/n,/r/n所以/r/n,/r/n設(shè)數(shù)列/r/n{c/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/nS/r/nn/r/n,所以/r/n,所以/r/n./r/n26/r/n.(2021?江西九江二模?理T/r/n3/r/n.)/r/n已知等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/nS/r/nn/r/n,且滿足/r/na/r/n3/r/n=/r/n7/r/n,/r/nS/r/n10/r/n=/r/n20/r/n,則/r/na/r/n8/r/n=()/r/nA/r/n.﹣/r/n5/r/n /r/nB/r/n.﹣/r/n3/r/n /r/nC/r/n./r/n3/r/n /r/nD/r/n./r/n5/r/nB/r/n./r/n設(shè)等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的公差為/r/nd/r/n,/r/n由題意得/r/n,/r/n解得/r/na/r/n1/r/n=/r/n11/r/n,/r/nd/r/n=﹣/r/n2/r/n,/r/n故/r/na/r/n8/r/n=/r/n11+7/r/n×(﹣/r/n2/r/n)=﹣/r/n3/r/n./r/n27/r/n.(2021?浙江杭州二模?理T/r/n8/r/n.)/r/n已知數(shù)列/r/n{/r/na/r/nn/r/n}/r/n滿足/r/na/r/nn/r/n﹣/r/n1/r/n=/r/na/r/nn/r/n+/r/na/r/nn/r/n﹣/r/n2/r/n(/r/nn/r/n≥/r/n3/r/n),設(shè)數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的前/r/nn/r/n項和為/r/nS/r/nn/r/n,若/r/nS/r/n2020/r/n=/r/n2019/r/n,/r/nS/r/n2019/r/n=/r/n2020/r/n,則/r/nS/r/n2021/r/n=()/r/nA/r/n./r/n1008/r/n /r/nB/r/n./r/n1009/r/n /r/nC/r/n./r/n2016/r/n /r/nD/r/n./r/n2018/r/nB/r/n./r/n因為/r/na/r/nn/r/n﹣/r/n1/r/n=/r/na/r/nn/r/n+/r/na/r/nn/r/n﹣/r/n2/r/n,(/r/nn/r/n≥/r/n3/r/n),/r/n所以/r/na/r/nn/r/n=/r/na/r/nn/r/n+1/r/n+/r/na/r/nn/r/n﹣/r/n1/r/n,則/r/na/r/nn/r/n+1/r/n+/r/na/r/nn/r/n﹣/r/n2/r/n=/r/n0/r/n,所以/r/na/r/nn/r/n+/r/na/r/nn/r/n+3/r/n=/r/n0/r/n,/r/na/r/nn/r/n+3/r/n+/r/na/r/nn/r/n+6/r/n=/r/n0/r/n,/r/n則/r/na/r/nn/r/n=/r/na/r/nn/r/n+6/r/n,可知/r/na/r/n1/r/n+/r/na/r/n4/r/n=/r/n0/r/n,/r/na/r/n2/r/n+/r/na/r/n5/r/n=/r/n0/r/n,/r/na/r/n3/r/n+/r/na/r/n6/r/n=/r/n0/r/n,/r/n所以/r/nS/r/n6/r/n=/r/na/r/n1/r/n+/r/na/r/n2/r/n+/r/n…/r/n+/r/na/r/n6/r/n=/r/n0/r/n,/r/n因為/r/n2019/r/n=/r/n6/r/n×/r/n336+3/r/n,所以/r/nS/r/n2019/r/n=/r/n0+/r/na/r/n2017/r/n+/r/na/r/n2018/r/n+/r/na/r/n2019/r/n=/r/n2020/r/n,/r/n所以/r/na/r/n2017/r/n+/r/na/r/n2018/r/n+/r/na/r/n2019/r/n=/r/n2020/r/n,/r/n因為/r/na/r/n2020/r/n=/r/nS/r/n2020/r/n﹣/r/nS/r/n2019/r/n=/r/n2019/r/n﹣/r/n2020/r/n=﹣/r/n1/r/n,則/r/na/r/n2017/r/n=/r/n1/r/n,/r/n所以/r/na/r/n2018/r/n+/r/na/r/n2019/r/n=/r/n2020/r/n﹣/r/n1/r/n=/r/n2019/r/n,因為/r/na/r/n2018/r/n=/r/na/r/n2017/r/n+/r/na/r/n2019/r/n=/r/n1+/r/na/r/n2019/r/n,/r/n所以/r/na/r/n2019/r/n=/r/n1009/r/n,/r/na/r/n2018/r/n=/r/n1010/r/n,/r/n因為/r/na/r/n2021/r/n=/r/na/r/n2018/r/n=﹣/r/n1010/r/n,所以/r/nS/r/n2021/r/n=/r/nS/r/n2020/r/n+/r/na/r/n2021/r/n=/r/n2019/r/n﹣/r/n1010/r/n=/r/n1009/r/n./r/n28/r/n.(2021?江西上饒二模?理T/r/n3/r/n.)等/r/n比數(shù)列/r/n{/r/na/r/nn/r/n}/r/n中,/r/na/r/n3/r/n=/r/n4/r/n,/r/na/r/n2/r/na/r/n6/r/n=/r/n64/r/n,則/r/na/r/n5/r/n=()/r/nA/r/n./r/n /r/nB/r/n./r/n8/r/n /r/nC/r/n./r/n16/r/n /r/nD/r/n./r/n32/r/nC/r/n./r/n∵等比數(shù)列/r/n{/r/na/r/nn/r/n}/r/n中,/r/na/r/n3/r/n=/r/n4/r/n,/r/na/r/n2/r/na/r/n6/r/n=/r/n64/r/n,/r/n∴/r/na/r/n2/r/na/r/n6/r/n=/r/n=/r/n64/r/n,/r/n解得/r/na/r/n4/r/n=±/r/n8/r/n,/r/n∴/r/nq/r/n=/r/n=±/r/n2/r/n,/r/n∴/r/na/r/n5/r/n=/r/n=/r/n4/r/n×/r/n4/r/n=/r/n16/r/n./r/n29/r/n.(2021?河北秦皇島二模?理T/r/n3/r/n.)南/r/n宋數(shù)學(xué)家楊輝《詳解九章算法》和《算法通變本末》中,提出垛積公式,所討論的高階等差數(shù)列前后兩項之差不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前/r/n6/r/n項分別/r/n1/r/n,/r/n6/r/n,/r/n13/r/n,/r/n24/r/n,/r/n41/r/n,/r/n66/r/n,則該數(shù)列的第/r/n7/r/n項為()/r/nA/r/n./r/n91/r/n /r/nB/r/n./r/n99/r/n /r/nC/r/n./r/n101/r/n /r/nD/r/n./r/n113/r/nC/r/n./r/n由題意得/r/n1/r/n,/r/n6/r/n,/r/n13/r/n,/r/n24/r/n,/r/n41/r/n,/r/n66/r/n的差組成數(shù)列:/r/n5/r/n,/r/n7/r/n,/r/n11/r/n,/r/n17/r/n,/r/n25/r/n…,這些數(shù)的差組成數(shù)列:/r/n2/r/n,/r/n4/r/n,/r/n6/r/n,/r/n8/r/n,/r/n10/r/n…,/r/n故該數(shù)列的第/r/n7/r/n項為/r/n10+25+66/r/n=/r/n101/r/n./r/n30/r/n.(2021?江西鷹潭二模?理T/r/n3/r/n.)記/r/nS/r/nn/r/n為等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的前/r/nn/r/n項和.已知/r/nS/r/n4/r/n=/r/n0/r/n,/r/na/r/n5/r/n=/r/n5/r/n,則()/r/nA/r/n./r/na/r/nn/r/n=/r/n2/r/nn/r/n﹣/r/n5/r/n /r/nB/r/n./r/na/r/nn/r/n=/r/n3/r/nn/r/n﹣/r/n10/r/n /r/nC/r/n./r/nS/r/nn/r/n=/r/n2/r/nn/r/n2/r/n﹣/r/n8/r/nn/r/n /r/nD/r/n./r/nS/r/nn/r/n=/r/nn/r/n2/r/n﹣/r/n2/r/nn/r/nA/r/n./r/n設(shè)等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的公差為/r/nd/r/n,由/r/nS/r/n4/r/n=/r/n0/r/n,/r/na/r/n5/r/n=/r/n5/r/n,得/r/n,∴/r/n,∴/r/na/r/nn/r/n=/r/n2/r/nn/r/n﹣/r/n5/r/n,/r/n./r/n3/r/n1.(2021?北京門頭溝二模?理T5)/r/n中/r/n國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:/r/n“/r/n三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細(xì)算相還/r/n./r/n”/r/n其大意為:/r/n“/r/n有一個人走/r/n378/r/n里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了/r/n6/r/n天后到達(dá)目的地/r/n./r/n”/r/n則該人第五天走的路程為/r/n(?)/r/nA.48/r/n里/r/n /r/nB.24/r/n里/r/n /r/nC.12/r/n里/r/n /r/nD.6/r/n里/r/nC/r/n./r/n本題考查等比數(shù)列的通項公式的運用,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運用./r/n
由題意可知,每天走的路程里數(shù)構(gòu)成以/r/n1/r/n2/r/n為公比的等比數(shù)列,由/r/nS/r/n解:記每天走的路程里數(shù)為/r/n{/r/na/r/nn/r/n}/r/n,由題意知/r/n{/r/na/r/nn/r/n}/r/n是公比/r/n1/r/n2/r/n的等比數(shù)列,/r/n
由/r/nS/r/n6/r/n=378/r/n,得/r/nS/r/n6/r/n=/r/na/r/n1/r/n(1-/r/n1/r/n2/r/n6/r/n)/r/n1-/r/n1/r/n2/r/n=378/r/n,解得:/r/na/r/n1/r/n=192/r/n,/r/n∴/r/na/r/n5/r/n=192×/r/n1/r/n2/r/n4/r/n=12(/r/n里/r/n)./r/n故選:/r/nC./r/n
/r/n32/r/nA/r/n.當(dāng)/r/nk/r/n=/r/n時,數(shù)列/r/n{/r/na/r/nn/r/n}/r/n為遞減數(shù)列/r/n /r/nB/r/n.當(dāng)/r/nk/r/n=/r/n時,數(shù)列/r/n{/r/na/r/nn/r/n}/r/n一定有最大項/r/n /r/nC/r/n.當(dāng)/r/n0/r/n</r/nk/r/n</r/n時,數(shù)列/r/n{/r/na/r/nn/r/n}/r/n為遞減數(shù)列/r/n /r/nD/r/n.當(dāng)/r/n為正整數(shù)時,數(shù)列/r/n{/r/na/r/nn/r/n}/r/n必有兩項相等的最大項/r/nBCD/r/n./r/na/r/nn/r/n</r/na/r/nn/r/n+1/r/n?/r/nn/r/n?/r/nk/r/nn/r/n<(/r/nn/r/n+1/r/n)?/r/nk/r/nn/r/n+1/r/n?/r/nn/r/n<(/r/nn/r/n+1/r/n)/r/nk/r/n?/r/n,/r/na/r/nn/r/n>/r/na/r/nn/r/n+1/r/n?/r/nn/r/n?/r/nk/r/nn/r/n>(/r/nn/r/n+1/r/n)?/r/nk/r/nn/r/n+1/r/n?/r/nn/r/n>(/r/nn/r/n+1/r/n)/r/nk/r/n?/r/n,/r/n對于/r/nA/r/n,因為/r/nk/r/n=/r/n,所以/r/na/r/n1/r/n=/r/n,/r/na/r/n2/r/n=/r/n2/r/n=/r/n,于是/r/na/r/n1/r/n=/r/na/r/n2/r/n,所以/r/nA/r/n錯;/r/n對于/r/nB/r/n,因為/r/nk/r/n=/r/n,所以/r/n=/r/n4/r/n,于是當(dāng)/r/nn/r/n>/r/n4/r/n時,/r/n{/r/na/r/nn/r/n}/r/n遞減,所以數(shù)列/r/n{/r/na/r/nn/r/n}/r/n一定有最大項,所以/r/nB/r/n對;/r/n對于/r/nC/r/n,因為當(dāng)/r/n0/r/n</r/nk/r/n</r/n時,/r/n</r/n,所以當(dāng)/r/nn/r/n≥/r/n1/r/n>/r/n>/r/n時,數(shù)列/r/n{/r/na/r/nn/r/n}/r/n為遞減數(shù)列,所以/r/nC/r/n對;/r/n對于/r/nD/r/n,設(shè)/r/n=/r/nm/r/n,當(dāng)/r/nn/r/n>/r/nm/r/n,即/r/nn/r/n≥/r/nm/r/n+1/r/n時數(shù)列/r/n{/r/na/r/nn/r/n}/r/n為遞減,當(dāng)/r/nn/r/n</r/nm/r/n時/r/n{/r/na/r/nn/r/n}/r/n為遞增,/r/n,最大項為/r/na/r/nm/r/n=/r/n,/r/na/r/nm/r/n+1/r/n=(/r/nm/r/n+1/r/n)/r/n=/r/n,/r/n所以數(shù)列/r/n{/r/na/r/nn/r/n}/r/n必有兩項相等的最大項,所以/r/nD/r/n對./r/n33/r/n.(2021?安徽淮北二模?文T/r/n8/r/n.)若/r/n正項等比數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的公比為/r/ne/r/n(/r/ne/r/n是自然對數(shù)的底數(shù)),則數(shù)列/r/n{/r/nlna/r/n2/r/nn/r/n﹣/r/n1/r/n}/r/n是()/r/nA/r/n.公比為/r/ne/r/n2/r/n的等比數(shù)列/r/n /r/nB/r/n.公比為/r/n2/r/n的等比數(shù)列/r/n /r/nC/r/n.公差為/r/n2/r/ne/r/n的等差數(shù)列/r/n /r/nD/r/n.公差為/r/n2/r/n的等差數(shù)列/r/nD/r/n./r/n正項等比數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的公比為/r/ne/r/n(/r/ne/r/n是自然對數(shù)的底數(shù)),/r/n∴/r/na/r/n2/r/nn/r/n﹣/r/n1/r/n=/r/n,∴/r/nlna/r/n2/r/nn/r/n﹣/r/n1/r/n=/r/n=/r/nlna/r/n1/r/n+2/r/nn/r/n﹣/r/n2/r/n=/r/n2/r/nn/r/n+/r/n(/r/nlna/r/n1/r/n﹣/r/n2/r/n),/r/n∴數(shù)列/r/n{/r/nlna/r/n2/r/nn/r/n﹣/r/n1/r/n}/r/n是公差為/r/n2/r/n的等差數(shù)列./r/n34/r/n.(2021?吉林長春一模?文T/r/n11./r/n)如/r/n圖/r/n,/r/n在面積為/r/n1/r/n的正方形/r/n內(nèi)做四邊形/r/n使/r/n以此類推,在四邊形/r/n內(nèi)再做四邊形/r/n……,/r/n記四邊形/r/n的面積為/r/n,/r/n則/r/nB/r/n./r/n由圖可知/r/n所以其前/r/n項和為/r/n,/r/n故選/r/nB./r/n35/r/n.(2021?寧夏銀川二模?文T/r/n6/r/n.)記/r/nS/r/nn/r/n為等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n的前/r/nn/r/n項和,已知/r/na/r/n2/r/n=/r/n0/r/n,/r/na/r/n6/r/n=/r/n8/r/n,則/r/nS/r/n10/r/n=()/r/nA/r/n./r/n66/r/n /r/nB/r/n./r/n68/r/n /r/nC/r/n./r/n70/r/n /r/nD/r/n./r/n80/r/nC/r/n./r/n等差數(shù)列/r/n{/r/na/r/nn/r/n}/r/n中,/r/na/r/n2/r/n=/r/n0/r/n,/r/na/r/n6/r/n=/r/n8/r/n,故/r/nd/r/n=/r/n=/r/n2/r/n,/r/na/r/n1/r/n=﹣/r/n2/r/n,則/r/nS/r/n10/r/n=/r/n10/r/n×(﹣/r/n2/r/n)/r/n+45/r/n×/r/n2/r/n=/r/n70/r/n./r/n二、填空題部分/r/n36/r/n.(2021?新高考全國Ⅰ卷?T1/r/n6/r/n)/r/n某校學(xué)生在研究民間剪紙藝術(shù)時,發(fā)現(xiàn)剪紙時經(jīng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)生產(chǎn)過程中的智能優(yōu)化
- 工作中的自我管理與時間管理技巧
- 工作中的目標(biāo)管理與效率提升策略
- 工業(yè)節(jié)能改造項目投資報告
- 工業(yè)設(shè)計的發(fā)展趨勢與創(chuàng)新點分析
- 工作休閑兩不誤-可穿戴設(shè)備在辦公室和休閑場合的應(yīng)用研究
- 工程中機(jī)電設(shè)備安裝與調(diào)試技術(shù)
- 工作流程優(yōu)化與提高工作效率的策略
- 工廠廢水處理的成效及經(jīng)驗分享
- 工程機(jī)械的節(jié)能減排技術(shù)應(yīng)用研究
- JG/T 504-2016陶粒加氣混凝土砌塊
- 騎馬安全責(zé)任協(xié)議書6篇
- 2025年中考數(shù)學(xué)壓軸題專練:圓的各性質(zhì)的綜合題(原卷版+解析)
- 薪資發(fā)放協(xié)議
- 生豬養(yǎng)殖綠色轉(zhuǎn)型與低碳技術(shù)應(yīng)用
- 2025年公眾生態(tài)環(huán)境滿意度調(diào)查方案
- 換瓦合同書安全協(xié)議書
- 2025年湖南省長沙市雅禮教育集團(tuán)中考數(shù)學(xué)一模試卷
- 第24個全國“安全生產(chǎn)月”專題宣講
- 2025年4月自考00186國際商務(wù)談判試題及答案含評分標(biāo)準(zhǔn)
- 警務(wù)技能抓捕課件
評論
0/150
提交評論