2023學年高考數學模擬測試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.22.已知,則的大小關系是()A. B. C. D.3.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.4.已知,若則實數的取值范圍是()A. B. C. D.5.在的展開式中,含的項的系數是()A.74 B.121 C. D.6.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或17.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.8.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數是()A.0 B.1 C.2 D.39.已知函數的定義域為,則函數的定義域為()A. B.C. D.10.若的展開式中的系數為-45,則實數的值為()A. B.2 C. D.11.設a,b,c為正數,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件12.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在中,,點是邊的中點,則__________,________.14.已知數列的前項和為,,,,則滿足的正整數的所有取值為__________.15.已知為橢圓內一定點,經過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.16.在數列中,,,曲線在點處的切線經過點,下列四個結論:①;②;③;④數列是等比數列;其中所有正確結論的編號是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.18.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.19.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.20.(12分)設橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.21.(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記分,“不合格”記分.現隨機抽取部分學生的成績,統計結果及對應的頻率分布直方圖如下所示:等級不合格合格得分頻數624(Ⅰ)若測試的同學中,分數段內女生的人數分別為,完成列聯表,并判斷:是否有以上的把握認為性別與安全意識有關?是否合格性別不合格合格總計男生女生總計(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中,共選取人進行座談,現再從這人中任選人,記所選人的量化總分為,求的分布列及數學期望;(Ⅲ)某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效,若,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?附表及公式:,其中.22.(10分)在孟德爾遺傳理論中,稱遺傳性狀依賴的特定攜帶者為遺傳因子,遺傳因子總是成對出現例如,豌豆攜帶這樣一對遺傳因子:使之開紅花,使之開白花,兩個因子的相互組合可以構成三種不同的遺傳性狀:為開紅花,和一樣不加區分為開粉色花,為開白色花.生物在繁衍后代的過程中,后代的每一對遺傳因子都包含一個父系的遺傳因子和一個母系的遺傳因子,而因為生殖細胞是由分裂過程產生的,每一個上一代的遺傳因子以的概率傳給下一代,而且各代的遺傳過程都是相互獨立的.可以把第代的遺傳設想為第次實驗的結果,每一次實驗就如同拋一枚均勻的硬幣,比如對具有性狀的父系來說,如果拋出正面就選擇因子,如果拋出反面就選擇因子,概率都是,對母系也一樣.父系?母系各自隨機選擇得到的遺傳因子再配對形成子代的遺傳性狀.假設三種遺傳性狀,(或),在父系和母系中以同樣的比例:出現,則在隨機雜交實驗中,遺傳因子被選中的概率是,遺傳因子被選中的概率是.稱,分別為父系和母系中遺傳因子和的頻率,實際上是父系和母系中兩個遺傳因子的個數之比.基于以上常識回答以下問題:(1)如果植物的上一代父系?母系的遺傳性狀都是,后代遺傳性狀為,(或),的概率各是多少?(2)對某一植物,經過實驗觀察發現遺傳性狀具有重大缺陷,可人工剔除,從而使得父系和母系中僅有遺傳性狀為和(或)的個體,在進行第一代雜交實驗時,假設遺傳因子被選中的概率為,被選中的概率為,.求雜交所得子代的三種遺傳性狀,(或),所占的比例.(3)繼續對(2)中的植物進行雜交實驗,每次雜交前都需要剔除性狀為的個體假設得到的第代總體中3種遺傳性狀,(或),所占比例分別為.設第代遺傳因子和的頻率分別為和,已知有以下公式.證明是等差數列.(4)求的通項公式,如果這種剔除某種遺傳性狀的隨機雜交實驗長期進行下去,會有什么現象發生?
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】
由圖像用分段函數表示,該物體在間的運動路程可用定積分表示,計算即得解【題目詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【答案點睛】本題考查了定積分的實際應用,考查了學生轉化劃歸,數形結合,數學運算的能力,屬于中檔題.2、B【答案解析】
利用函數與函數互為反函數,可得,再利用對數運算性質比較a,c進而可得結論.【題目詳解】依題意,函數與函數關于直線對稱,則,即,又,所以,.故選:B.【答案點睛】本題主要考查對數、指數的大小比較,屬于基礎題.3、A【答案解析】
由余弦定理求出角,再由三角形面積公式計算即可.【題目詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【答案點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.4、C【答案解析】
根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【題目詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【答案點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,5、D【答案解析】
根據,利用通項公式得到含的項為:,進而得到其系數,【題目詳解】因為在,所以含的項為:,所以含的項的系數是的系數是,,故選:D【答案點睛】本題主要考查二項展開式及通項公式和項的系數,還考查了運算求解的能力,屬于基礎題,6、D【答案解析】
求得直線的斜率,利用曲線的導數,求得切點坐標,代入直線方程,求得的值.【題目詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【答案點睛】本小題主要考查根據切線方程求參數,屬于基礎題.7、B【答案解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.8、B【答案解析】
用空間四邊形對①進行判斷;根據公理2對②進行判斷;根據空間角的定義對③進行判斷;根據空間直線位置關系對④進行判斷.【題目詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【答案點睛】本小題考查空間點,線,面的位置關系及其相關公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數形結合思想,化歸與轉化思想.9、A【答案解析】試題分析:由題意,得,解得,故選A.考點:函數的定義域.10、D【答案解析】
將多項式的乘法式展開,結合二項式定理展開式通項,即可求得的值.【題目詳解】∵所以展開式中的系數為,∴解得.故選:D.【答案點睛】本題考查了二項式定理展開式通項的簡單應用,指定項系數的求法,屬于基礎題.11、B【答案解析】
根據不等式的性質,結合充分條件和必要條件的定義進行判斷即可.【題目詳解】解:,,為正數,當,,時,滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【答案點睛】本題主要考查充分條件和必要條件的判斷,結合不等式的性質是解決本題的關鍵.12、C【答案解析】
設直線AB的方程為,代入得:,由根與系數的關系得,,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【題目詳解】根據題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設直線AB的方程為,代入得:.由根與系數的關系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【答案點睛】本題考查直線與拋物線的位置關系、焦半徑公式的應用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.二、填空題:本題共4小題,每小題5分,共20分。13、2【答案解析】
根據正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數量積求解即可.【題目詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【答案點睛】本題主要考查了三角形的解法,向量的數量積的應用,考查計算能力,屬于中檔題.14、20,21【答案解析】
由題意知數列奇數項和偶數項分別為等差數列和等比數列,則根據為奇數和為偶數分別算出求和公式,代入數值檢驗即可.【題目詳解】解:由題意知數列的奇數項構成公差為的等差數列,偶數項構成公比為的等比數列,則;.當時,,.當時,,.由此可知,滿足的正整數的所有取值為20,21.故答案為:20,21【答案點睛】本題考查等差數列與等比數列通項與求和公式,是綜合題,分清奇數項和偶數項是解題的關鍵.15、【答案解析】
設弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【題目詳解】設弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【答案點睛】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設而不求法來解答,考查計算能力,屬于中等題.16、①③④【答案解析】
先利用導數求得曲線在點處的切線方程,由此求得與的遞推關系式,進而證得數列是等比數列,由此判斷出四個結論中正確的結論編號.【題目詳解】∵,∴曲線在點處的切線方程為,則.∵,∴,則是首項為1,公比為的等比數列,從而,,.故所有正確結論的編號是①③④.故答案為:①③④【答案點睛】本小題主要考查曲線的切線方程的求法,考查根據遞推關系式證明等比數列,考查等比數列通項公式和前項和公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【答案解析】
(Ⅰ)利用零點分段討論法把函數改寫成分段函數的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結合題意,只需即可,解不等式即可求解.【題目詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數的取值范圍是.【答案點睛】本題考查由存在性問題求參數的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和均值不等式求最值;考查運算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.18、(1)證明見解析.(2)【答案解析】
(1)連接AC1,BC1,結合中位線定理可證MN∥BC1,再結合線面垂直的判定定理和線面垂直的性質分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設C1到平面B1CM的距離為h,則有,結合幾何關系即可求解【題目詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【答案點睛】本題主要考查面面垂直的證明以及點到平面的距離,一般證明面面垂直都用線面垂直轉化為面面垂直,而點到面的距離常用體積轉化來求,屬于中檔題19、(1)證明見解析;(2)證明見解析;(3)不能為.【答案解析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【題目詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點,延長交于點,連接,由,,,所以平面,則平面,又,根據三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,,又,所以中,由大角對大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【答案點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,屬中檔題.20、(1);(2)證明見解析,.【答案解析】
(1)根據離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設,,聯立方程組利用韋達定理得到,,根據化簡得到,代入直線方程得到答案.【題目詳解】(1)由題意可得,解得,,則橢圓的標準方程是.(2)當直線的斜率為0時,直線與直線關于軸對稱,則直線與直線的斜率之和為零,與題設條件矛盾,故直線的斜率不為0.設,,直線的方程為聯立,整理得則,.因為直線與直線的斜率之和為1,所以,所以,將,代入上式,整理得.所以,即,則直線的方程為.故直線恒過定點.【答案點睛】本題考查了橢圓的標準方程,直線過定點問題,計算出是解題的關鍵,意在考查學生的計算能力和轉化能力.21、(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調整安全教育方案.【答案解析】
(I)根據題目所給數據填寫好列聯表,計算出的值,由此判斷出在犯錯誤概率不超過的前提下,不能認為性別
評論
0/150
提交評論