2022年廣東省深圳市福田區耀華實驗學校九年級數學上冊期末達標測試試題含解析_第1頁
2022年廣東省深圳市福田區耀華實驗學校九年級數學上冊期末達標測試試題含解析_第2頁
2022年廣東省深圳市福田區耀華實驗學校九年級數學上冊期末達標測試試題含解析_第3頁
2022年廣東省深圳市福田區耀華實驗學校九年級數學上冊期末達標測試試題含解析_第4頁
2022年廣東省深圳市福田區耀華實驗學校九年級數學上冊期末達標測試試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.已知,是一元二次方程的兩個實數根,下列結論錯誤的是()A. B. C. D.2.體育課上,某班兩名同學分別進行5次短跑訓練,要判斷哪一名同學的成績比較穩定,通常需要比較這兩名學生成績的()A.平均數 B.頻數 C.中位數 D.方差3.方程x2﹣x=0的解為()A.x1=x2=1 B.x1=x2=0 C.x1=0,x2=1 D.x1=1,x2=﹣14.已知,則等于()A.2 B.3 C. D.5.下列事件中,屬于不確定事件的有()①太陽從西邊升起;②任意摸一張體育彩票會中獎;③擲一枚硬幣,有國徽的一面朝下;④小明長大后成為一名宇航員.A.①②③B.①③④C.②③④D.①②④6.已知二次函數y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤7.若x=﹣1是關于x的一元二次方程ax2﹣bx﹣2019=0的一個解,則1+a+b的值是()A.2017 B.2018 C.2019 D.20208.對于反比例函數,下列說法錯誤的是()A.它的圖象分別位于第二、四象限B.它的圖象關于成軸對稱C.若點,在該函數圖像上,則D.的值隨值的增大而減小9.如圖所示,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和點B,與y軸的正半軸交于點C.現有下列結論:①abc>0;②4a﹣2b+c>0;③2a﹣b>0;④3a+c=0,其中,正確結論的個數是()A.1 B.2 C.3 D.410.下列事件中,屬于必然事件的是()A.2020年的除夕是晴天 B.太陽從東邊升起C.打開電視正在播放新聞聯播 D.在一個都是白球的盒子里,摸到紅球11.如圖,l1∥l2∥l3,直線a,b與l1,l2,l3分別相交于點A、B、C和點D、E、F,若,DE=4,則DF的長是()A. B. C.10 D.612.如圖,在平面直角坐標系中,點在拋物線上運動,過點作軸于點,以為對角線作矩形,連結,則對角線的最小值為()A. B. C. D.二、填空題(每題4分,共24分)13.若把一根長200cm的鐵絲分成兩部分,分別圍成兩個正方形,則這兩個正方形的面積的和最小值為_____.14.如圖,在矩形中,對角線與相交于點,,垂足為點,,且,則的長為_______.15.已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.16.已知二次函數(),與的部分對應值如下表所示:-10123461-2-3-2下面有四個論斷:①拋物線()的頂點為;②;③關于的方程的解為,;④當時,的值為正,其中正確的有_______.17.在同一時刻,身高1.6米的小強在陽光下的影長為0.8米,一棵大樹的影長為4.8米,則樹的高度為.18.若二次函數y=2(x+1)2+3的圖象上有三個不同的點A(x1,4)、B(x1+x2,n)、C(x2,4),則n的值為_____.三、解答題(共78分)19.(8分)如圖,一次函數y=kx+b(k,b為常數,k≠0)的圖象與反比例函數的圖象交于A、B兩點,且與x軸交于點C,與y軸交于點D,A點的橫坐標與B點的縱坐標都是3.(1)求一次函數的表達式;(2)求△AOB的面積;(3)寫出不等式kx+b>﹣的解集.20.(8分)如圖,在平面直角坐標系中,拋物線過點,動點P在線段上以每秒2個單位長度的速度由點運動到點停止,設運動時間為,過點作軸的垂線,交直線于點,交拋物線于點.連接,是線段的中點,將線段繞點逆時針旋轉得線段.(1)求拋物線的解析式;(2)連接,當為何值時,面積有最大值,最大值是多少?(3)當為何值時,點落在拋物線上.21.(8分)如圖,點為上一點,點在直徑的延長線上,且,過點作的切線,交的延長線于點.判斷直線與的位置關系,并說明理由;若,求:①的半徑,②的長.22.(10分)在等邊三角形ABC中,點D,E分別在BC,AC上,且DC=AE,AD與BE交于點P,連接PC.(1)證明:ΔABE≌ΔCAD.(2)若CE=CP,求證∠CPD=∠PBD.(3)在(2)的條件下,證明:點D是BC的黃金分割點.23.(10分)如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.(1)求證:PD是⊙O的切線;(2)求證:△PBD∽△DCA.24.(10分)某體育看臺側面的示意圖如圖所示,觀眾區的坡度為,頂端離水平地面的高度為,從頂棚的處看處的仰角,豎直的立桿上、兩點間的距離為,處到觀眾區底端處的水平距離為.求:(1)觀眾區的水平寬度;(2)頂棚的處離地面的高度.(,,結果精確到)25.(12分)解方程:2(x-3)2=x2-926.如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,交DC的延長線于點F,取EF的中點G,連接CG,BG.(1)求證:△DCG≌△BEG;(2)你能求出∠BDG的度數嗎?若能,請寫出計算過程;若不能,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、C【分析】由題意根據解一元二次方程的概念和根與系數的關系對選項逐次判斷即可.【詳解】解:∵△=22-4×1×0=4>0,∴,選項A不符合題意;∵是一元二次方程的實數根,∴,選項B不符合題意;∵,是一元二次方程的兩個實數根,∴,,選項D不符合題意,選項C符合題意.故選:C.【點睛】本題考查解一元二次方程和根與系數的關系,能熟記根與系數的關系的內容是解此題的關鍵.2、D【分析】要判斷成績的穩定性,一般是通過比較兩者的方差實現,據此解答即可.【詳解】解:要判斷哪一名同學的成績比較穩定,通常需要比較這兩名學生成績的方差.故選:D.【點睛】本題考查了統計量的選擇,屬于基本題型,熟知方差的意義是解題關鍵.3、C【解析】通過提取公因式對等式的左邊進行因式分解,然后解兩個一元一次方程即可.【詳解】解:∵x2﹣x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,∴x1=0,x2=1,故選:C.【點睛】本題考查了一元二次方程的解法,屬于基本題型,熟練掌握分解因式的方法是解題的關鍵.4、D【詳解】∵2x=3y,∴.故選D.5、C【解析】因為不確定事件即隨機事件是指在一定條件下,可能發生,也可能不發生的事件,確定事件包括必然事件和不可能事件,所以①太陽從西邊升起,是不可能發生的事件,是確定事件,②任意摸一張體育彩票會中獎,是不確定事件,③擲一枚硬幣,有國徽的一面朝下,是不確定事件,④小明長大后成為一名宇航員,是不確定事件,故選C.點睛:本題考查確定事件和不確定事件的定義,解決本題的關鍵是要熟練掌握確定事件和不確定事件的定義.6、C【分析】根據二次函數的性質逐項分析可得解.【詳解】解:由函數圖象可得各系數的關系:a<0,b<0,c>0,則①當x=1時,y=a+b+c<0,正確;②當x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結論的序號是①②③⑤.故選C7、D【分析】根據x=-1是關于x的一元二次方程ax2﹣bx﹣2019=0的一個解,可以得到a+b的值,從而可以求得所求式子的值.【詳解】解:∵x=﹣1是關于x的一元二次方程ax2﹣bx﹣2019=0的一個解,∴a+b﹣2019=0,∴a+b=2019,∴1+a+b=1+2019=2020,故選:D.【點睛】本題考查一元二次方程的解,解答本題的關鍵是明確題意,求出所求式子的值.8、D【分析】根據反比例函數的性質對各選項逐一分析即可.【詳解】解:反比例函數,,圖像在二、四象限,故A正確.反比例函數,當時,圖像關于對稱;當時,圖像關于對稱,故B正確當,的值隨值的增大而增大,,則,故C正確在第二象限或者第四象限,的值隨值的增大而增大,故D錯誤故選D【點睛】本題主要考查了反比例函數的性質.9、B【分析】由拋物線的開口方向,判斷a與0的關系;由對稱軸與y軸的位置關系,判斷ab與0的關系;由拋物線與y軸的交點,判斷c與0的關系,進而判斷abc與0的關系,據此可判斷①.由x=﹣2時,y=4a﹣2b+c,再結合圖象x=﹣2時,y>0,即可得4a﹣2b+c與0的關系,據此可判斷②.根據圖象得對稱軸為x=﹣>﹣1,即可得2a﹣b與0的關系,據此可判斷③.由x=1時,y=a+b+c,再結合2a﹣b與0的關系,即可得3a+c與0的關系,據此可判斷④.【詳解】解:①∵拋物線的開口向下,∴a<0,∵對稱軸位于y軸的左側,∴a、b同號,即ab>0,∵拋物線與y軸交于正半軸,∴c>0,∴abc>0,故①正確;②如圖,當x=﹣2時,y>0,即4a﹣2b+c>0,故②正確;③對稱軸為x=﹣>﹣1,得2a<b,即2a﹣b<0,故③錯誤;④∵當x=1時,y=0,∴0=a+b+c,又∵2a﹣b<0,即b>2a,∴0=a+b+c>a+2a+c=3a+c,即3a+c<0,故④錯誤.綜上所述,①②正確,即有2個結論正確.故選:B.【點睛】本題考查二次函數圖象位置與系數的關系.熟練掌握二次函數開口方向、對稱軸、與坐標軸交點等性質,并充分運用數形結合是解題關鍵.10、B【分析】根據必然事件和隨機事件的概念進行分析.【詳解】A選項:2020年的元旦是晴天,屬于隨機事件,故不合題意;

B選項:太陽從東邊升起,屬于必然事件,故符合題意;

C選項:打開電視正在播放新聞聯播,屬于隨機事件,故不合題意;

D選項:在一個都是白球的盒子里,摸到紅球,屬于不可能事件,故不合題意.故選:B.【點睛】考查了確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件;注:事先能肯定它一定會發生的事件稱為必然事件,事先能肯定它一定不會發生的事件稱為不可能事件,必然事件和不可能事件都是確定的.在一定條件下,可能發生也可能不發生的事件,稱為隨機事件.11、C【解析】試題解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故選C.12、B【分析】根據矩形的性質可知,要求BD的最小值就是求AC的最小值,而AC的長度對應的是A點的縱坐標,然后利用二次函數的性質找到A點縱坐標的最小值即可.【詳解】∵四邊形ABCD是矩形∴∴頂點坐標為∵點在拋物線上運動∴點A縱坐標的最小值為2∴AC的最小值是2∴BD的最小值也是2故選:B.【點睛】本題主要考查矩形的性質及二次函數的最值,掌握矩形的性質和二次函數的圖象和性質是解題的關鍵.二、填空題(每題4分,共24分)13、1150cm1【分析】設將鐵絲分成xcm和(100﹣x)cm兩部分,則兩個正方形的邊長分別是cm,cm,再列出二次函數,求其最小值即可.【詳解】如圖:設將鐵絲分成xcm和(100﹣x)cm兩部分,列二次函數得:y=()1+()1=(x﹣100)1+1150,由于>0,故其最小值為1150cm1,故答案為:1150cm1.【點睛】本題考查二次函數的最值問題,解題的關鍵是根據題意正確列出二次函數.14、【解析】設DE=x,則OE=2x,根據矩形的性質可得OC=OD=3x,在直角三角形OEC中:可求得CE=x,即可求得x=,即DE的長為.【詳解】∵四邊形ABCD是矩形∴OC=AC=BD=OD設DE=x,則OE=2x,OC=OD=3x,∵,∴∠OEC=90°在直角三角形OEC中=5∴x=即DE的長為.故答案為:【點睛】本題考查的是矩形的性質及勾股定理,掌握矩形的性質并靈活的使用勾股定理是解答的關鍵.15、1.【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案為1.【點睛】本題考查了角平分線的性質、三角形內角和定理以及含30度角的直角三角形,利用角平分線的性質及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關鍵.16、①③④【分析】根據表格,即可判斷出拋物線的對稱軸,從而得到頂點坐標,即可判斷①;根據拋物線的對稱性即可判斷②;根據表格中函數值為-2時,對應的x的值,即可判斷③;根據二次函數的增減性即可判斷④.【詳解】解:①根據表格可知:拋物線()的對稱軸為x=2,∴拋物線()的頂點為,故①正確;②根據拋物線的對稱性可知:當x=4和x=0時,對應的函數值相同,∴m=1,故②錯誤;③由表格可知:對于二次函數,當y=-2時,對應的x的值為1或3∴關于的方程的解為,,故③正確;④由表格可知:當x<2時,y隨x的增大而減小∵,拋物線過(0,1)∴當時,>1>0∴當時,的值為正,故④正確.故答案為:①③④.【點睛】此題考查的是二次函數的圖象及性質,掌握二次函數的對稱性、頂點坐標與最值、二次函數與一元二次方程的關系和二次函數的增減性是解決此題的關鍵.17、9.6【解析】試題分析:設樹的高度為x米,根據在同一時刻物高與影長成比例,即可列出比例式求解.設樹的高度為x米,由題意得解得則樹的高度為9.6米.考點:本題考查的是比例式的應用點評:解答本題的關鍵是讀懂題意,準確理解在同一時刻物高與影長成比例,正確列出比例式.18、1【分析】先根據點A,C的坐標,建立方程求出x1+x2=-2,代入二次函數解析式即可得出結論.【詳解】∵A(x1,4)、C(x2,4)在二次函數y=2(x+1)2+3的圖象上,∴2(x+1)2+3=4,∴2x2+4x+1=0,根據根與系數的關系得,x1+x2=-2,∵B(x1+x2,n)在二次函數y=2(x+1)2+3的圖象上,∴n=2(-2+1)2+3=1,故答案為:1.【點睛】此題主要考查了二次函數圖象上點的特點,根與系數的關系,求出x1+x2=-2是解本題的關鍵.三、解答題(共78分)19、(1)y=﹣x﹣1;(2)△AOB的面積為;(3)x<﹣4或0<x<3.【解析】(1)先根據A點的橫坐標與B點的縱坐標都是3,求出A,B,再把A,B的值代入解析式即可解答(2)先求出C的坐標,利用三角形的面積公式即可解答(3)一次函數大于反比例函數即一次函數的圖象在反比例函數的圖象的上邊時,對應的x的取值范圍;【詳解】(1)∵一次函數y=kx+b(k,b為常數,k≠0)的圖象與反比例函數的圖象交于A、B兩點,且與x軸交于點C,與y軸交于點D,A點的橫坐標與B點的縱坐標都是3,∴,解得:x=﹣4,y=﹣=﹣4,故B(﹣4,3),A(3,﹣4),把A,B點代入y=kx+b得:,解得:,故直線解析式為:y=﹣x﹣1;(2)y=﹣x﹣1,當y=0時,x=﹣1,故C點坐標為:(﹣1,0),則△AOB的面積為:×1×3+×1×4=;(3)不等式kx+b>﹣的解集為:x<﹣4或0<x<3.【點睛】此題考查反比例函數與一次函數的交點問題,解題關鍵在于把已知點代入解析式20、(1);(2)當時,面積的最大值為16;(3)【分析】(1)用待定系數法即可求出拋物線的解析式;(2)先用待定系數法求出直線AB的解析式,然后根據點P的坐標表示出Q,D的坐標,進一步表示出QD的長度,從而利用面積公式表示出的面積,最后利用二次函數的性質求最大值即可;(3)分別過點作軸的垂線,垂足分別為,首先證明≌,得到,然后得到點N的坐標,將點N的坐標代入拋物線的解析式中,即可求出t的值,注意t的取值范圍.【詳解】(1)∵拋物線過點,∴解得所以拋物線的解析式為:;(2)設直線AB的解析式為,將代入解析式中得,解得∴直線AB解析式為.∵,,∴,∴,∴當時,面積的最大值為16;(3)分別過點作軸的垂線,垂足分別為,.在和中,,∴≌,∴.∵,.當點落在拋物線上時,.∴,,∴.【點睛】本題主要考查二次函數與幾何綜合,掌握待定系數法,全等三角形的判定及性質,二次函數的性質是解題的關鍵.21、(1)直線與相切;見解析(2)①3;②6.【分析】(1)首先由圓的性質得出,然后由圓內接直角三角形得出,,進而得出,即可判定其相切;(2)①首先根據根據元的性質得出,,進而可判定,即可得出半徑;②首先由OP、OB得出OC,然后由切線性質得出,再由判定進而利用相似性質構建方程,即可得解.【詳解】直線與相切;理由:連接,,,是的直徑,,,,,即,為上的一點,直線與相切;①,,,,,,,圓的半徑為;②,,∵過點作的切線交的延長線于點,,,即【點睛】此題主要考查直線和圓的位置關系以及相似三角形的判定與性質,熟練掌握。即可解題.22、(1)見解析;(2)見解析;(3)見解析【分析】(1)因為△ABC是等邊三角形,所以AB=AC,∠BAE=∠ACD=60°,又AE=CD,即可證明ΔABE≌ΔCAD;(2)設則由等邊對等角可得可得以及,故;(3)可證可得,故由于可得,根據黃金分割點可證點是的黃金分割點;【詳解】證明:(1)∵△ABC是等邊三角形,∴AB=AC,∠BAE=∠ACD=60°,在ΔABE與ΔCDA中,AB=AC,∠BAE=∠ACD=60°,AE=CD,∴△AEB≌△CDA;(2)由(1)知,則,設,則,∵,∴,∴,又,∴;(3)在和中,,,∴,∴,∴,又,∴,∴點是的黃金分割點;【點睛】本題主要考查了等邊三角形的性質,全等三角形的判定與性質,掌握等邊三角形的性質,全等三角形的判定與性質是解題的關鍵.23、(1)見解析;(2)見解析【解析】(1)由直徑所對的圓周角為直角得到∠BAC為直角,再由AD為角平分線,得到一對角相等,根據同弧所對的圓心角等于圓周角的2倍及等量代換確定出∠DOC為直角,與平行線中的一條垂直,與另一條也垂直得到OD與PD垂直,即可得證;

(2)由PD與BC平行,得到一對同位角相等,再由同弧所對的圓周角相等及等量代換得到∠P=∠ACD,根據同角的補角相等得到一對角相等,利用兩對角相等的三角形相似即可得證;【詳解】證明:(1)∵圓心O在BC上,∴BC是圓O的直徑,∴∠BAC=90°,連接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD為圓O的半徑,∴PD是圓O的切線;(2)∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA.【點睛】本題考查了相似三角形的判定與性質,切線的判定與性質,熟練掌握判定性質是解題關鍵24、(1)20;(2)頂棚的處離地面的高度約

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論