2022-2023學年上海市虹口區數學九年級上冊期末經典模擬試題含解析_第1頁
2022-2023學年上海市虹口區數學九年級上冊期末經典模擬試題含解析_第2頁
2022-2023學年上海市虹口區數學九年級上冊期末經典模擬試題含解析_第3頁
2022-2023學年上海市虹口區數學九年級上冊期末經典模擬試題含解析_第4頁
2022-2023學年上海市虹口區數學九年級上冊期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

VIP免費下載

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題3分,共30分)1.在平面直角坐標系中,二次函數與坐標軸交點個數()A.3個 B.2個 C.1個 D.0個2.電影《流浪地球》一上映就獲得追捧,第一天票房收入約8億元,第三天票房收入達到了11.52億元,設第一天到第三天票房收入平均每天增長的百分率為x,則可列方程()A.8(1+x)=11.52 B.8(1+2x)=11.52C.8(1+x)=11.52 D.8(1﹣x)=11.523.如圖,△AOB為等腰三角形,頂點A的坐標(2,),底邊OB在x軸上.將△AOB繞點B按順時針方向旋轉一定角度后得△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為()A.(,) B.(,) C.(,) D.(,4)4.已知二次函數的圖象(0≤x≤4)如圖,關于該函數在所給自變量的取值范圍內,下列說法正確的是()A.有最大值1.5,有最小值﹣2.5 B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2.5 D.有最大值2,無最小值5.﹣3的絕對值是()A.﹣3 B.3 C.- D.6.二次函數圖象如圖,下列結論正確的是()A. B.若且,則C. D.當時,7.下列各式由左到右的變形中,屬于分解因式的是()A. B.C. D.8.在Rt△ABC中,∠C=90°,若sin∠A=,則cosB=()A. B. C. D.9.反比例函數圖象的一支如圖所示,的面積為2,則該函數的解析式是()A. B. C. D.10.如圖,在中,,兩個頂點在軸的上方,點的坐標是.以點為位似中心,在軸的下方作的位似圖形,使得的邊長是的邊長的2倍.設點的坐標是,則點的坐標是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,一艘輪船從位于燈塔的北偏東60°方向,距離燈塔60海里的小島出發,沿正南方向航行一段時間后,到達位于燈塔的南偏東45°方向上的處,這時輪船與小島的距離是__________海里.12.某農場擬建兩間矩形飼養室,一面靠現有墻(墻足夠長),中間用一道墻隔開,并在如圖所示的三處各留1m寬的門.已知計劃中的材料可建墻體(不包括門)總長為27m,則能建成的飼養室面積最大為________

m2.13.如圖,在平面直角坐標系中,函數與的圖象交于兩點,過作軸的垂線,交函數的圖象于點,連接,則的面積為_______.14.如圖所示,點為平分線上一點,以點為頂點的兩邊分別與射線,相交于點,,如果在繞點旋轉時始終滿足,我們就把叫做的關聯角.如果,是的關聯角,那么的度數為______.15.如圖,在中,在邊上,,是的中點,連接并延長交于,則______.16.如圖,是⊙的一條弦,⊥于點,交⊙于點,連接.如果,,那么⊙的半徑為_________.17.已知拋物線經過和兩點,則的值為__________.18.關于的一元二次方程有兩個不相等實數根,則的取值范圍是________.三、解答題(共66分)19.(10分)在如圖所示的平面直角坐標系中,已知點A(﹣3,﹣3),點B(﹣1,﹣3),點C(﹣1,﹣1).(1)畫出△ABC;(2)畫出△ABC關于x軸對稱的△A1B1C1,并寫出A1點的坐標:;(3)以O為位似中心,在第一象限內把△ABC擴大到原來的兩倍,得到△A2B2C2,并寫出A2點的坐標:.20.(6分)如圖,半圓O的直徑AB=10,將半圓O繞點B順時針旋轉45°得到半圓O′,與AB交于點P,求AP的長.21.(6分)如圖,已知直線交于,兩點;是的直徑,點為上一點,且平分,過作,垂足為.(1)求證:為的切線;(2)若,的直徑為10,求的長.22.(8分)如圖,海中有兩個小島,,某漁船在海中的處測得小島D位于東北方向上,且相距,該漁船自西向東航行一段時間到達點處,此時測得小島恰好在點的正北方向上,且相距,又測得點與小島相距.(1)求的值;(2)求小島,之間的距離(計算過程中的數據不取近似值).23.(8分)(1)計算:.(2)用適當的方法解下列方程;①;②.24.(8分)如圖,AB是⊙O的直徑,D是弦AC的延長線上一點,且CD=AC,DB的延長線交⊙O于點E.(1)求證:CD=CE;(2)連結AE,若∠D=25°,求∠BAE的度數.25.(10分)如圖,在平面內。點為線段上任意一點.對于該平面內任意的點,若滿足小于等于則稱點為線段的“限距點”.(1)在平面直角坐標系中,若點.①在的點中,是線段的“限距點”的是;②點P是直線上一點,若點P是線段AB的“限距點”,請求出點P橫坐標的取值范圍.(2)在平面直角坐標系中,若點.若直線上存在線段AB的“限距點”,請直接寫出的取值范圍26.(10分)如圖,拋物線與軸交于,兩點.(1)求該拋物線的解析式;(2)若拋物線交軸于點,在該拋物線的對稱軸上是否存在點,使得的周長最小?若存在,求出點的坐標;若不存在,請說明理由

參考答案一、選擇題(每小題3分,共30分)1、B【分析】首先根據根的判別式判定與軸的交點,然后令,判定與軸的交點,即可得解.【詳解】由題意,得∴該函數與軸有一個交點當時,∴該函數與軸有一個交點∴該函數與坐標軸有兩個交點故答案為B.【點睛】此題主要考查利用根的判別式判定二次函數與坐標軸的交點,熟練掌握,即可解題.2、C【分析】設平均每天票房的增長率為,根據第一天票房收入約8億元,第三天票房收入達到了11.52億元,即可得出關于的一元二次方程.【詳解】解:設平均每天票房的增長率為,根據題意得:.故選:C.【點睛】本題考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.3、C【分析】利用等面積法求O'的縱坐標,再利用勾股定理或三角函數求其橫坐標.【詳解】解:過O′作O′F⊥x軸于點F,過A作AE⊥x軸于點E,∵A的坐標為(1,),∴AE=,OE=1.由等腰三角形底邊上的三線合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,則A′B=3,由旋轉前后三角形面積相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐標為().故選C.【點睛】本題考查坐標與圖形的旋轉變化;勾股定理;等腰三角形的性質;三角形面積公式.4、C【詳解】由圖像可知,當x=1時,y有最大值2;當x=4時,y有最小值-2.5.故選C.5、B【分析】根據負數的絕對值是它的相反數,可得出答案.【詳解】根據絕對值的性質得:|-1|=1.故選B.【點睛】本題考查絕對值的性質,需要掌握非負數的絕對值是它本身,負數的絕對值是它的相反數.6、D【分析】根據二次函數的圖象得到相關信息并依次判斷即可得到答案.【詳解】由圖象知:a<0,b>0,c>0,,∴abc<0,故A選項錯誤;若且,∴對稱軸為,故B選項錯誤;∵二次函數的圖象的對稱軸為直線x=1,與x軸的一個交點的橫坐標小于3,∴與x軸的另一個交點的橫坐標大于-1,當x=-1時,得出y=a-b+c<0,故C選項錯誤;∵二次函數的圖象的對稱軸為直線x=1,開口向下,∴函數的最大值為y=a+b+c,∴,∴,故D選項正確,故選:D.【點睛】此題考查二次函數的圖象,根據函數圖象得到對應系數的符號,并判斷代數式的符號,正確理解二次函數圖象與系數的關系是解題的關鍵.7、C【解析】根據題中“屬于分解因式的是”可知,本題考查多項式的因式分解的判斷,根據因式分解的概念,運用因式分解是把多項式分解成若干個整式相乘的形式,進行分析判斷.【詳解】A.屬于整式乘法的變形.B.不符合因式分解概念中若干個整式相乘的形式.C.運用提取公因式法,把多項式分解成了5x與(2x-1)兩個整式相乘的形式.D.不符合因式分解概念中若干個整式相乘的形式.故應選C【點睛】本題解題關鍵:理解因式分解的概念是把多項式分解成若干個整式相乘的形式,注意的是相乘的形式.8、A【分析】根據正弦和余弦的定義解答即可.【詳解】解:如圖,在Rt△ABC中,∠C=90°,∵sinA=,cosB=,∴cosB=.故選:A.【點睛】本題考查了銳角三角函數的定義,屬于應知應會題型,熟練掌握銳角三角函數的概念是解題關鍵.9、D【分析】根據反比例函數系數k的幾何意義,由△POM的面積為2,可知|k|=2,再結合圖象所在的象限,確定k的值,則函數的解析式即可求出.【詳解】解:△POM的面積為2,S=|k|=2,,又圖象在第四象限,k<0,k=-4,反比例函數的解析式為:.故選D.【點睛】本題考查了反比例函數的比例系數k與其圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即S=|k|.10、A【分析】作BD⊥x軸于D,B′E⊥x軸于E,根據相似三角形的性質求出CE,B′E的長,得到點B′的坐標.【詳解】作BD⊥x軸于D,B′E⊥x軸于E,∵點的坐標是,點的坐標是,∴CD=2,BD=,由題意得:C∽△,相似比為1:2,∴,∴CE=4,B′E=1,∴點B′的坐標為(3,-1),故選:A.【點睛】本題考查了位似變換、坐標與圖形性質,熟練掌握位似變換的性質是解答的關鍵.二、填空題(每小題3分,共24分)11、(30+30)【分析】過點C作CD⊥AB,則在Rt△ACD中易得AD的長,再在Rt△BCD中求出BD,相加可得AB的長.【詳解】解:過C作CD⊥AB于D點,由題意可得,

∠ACD=30°,∠BCD=45°,AC=1.

在Rt△ACD中,cos∠ACD=,∴AD=AC=30,CD=AC?cos∠ACD=1×,在Rt△DCB中,∵∠BCD=∠B=45°,

∴CD=BD=30,∴AB=AD+BD=30+30.答:此時輪船所在的B處與小島A的距離是(30+30)海里.

故答案為:(30+30).【點睛】此題主要考查了解直角三角形的應用-方向角問題,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.12、75【解析】試題分析:首先設垂直于墻面的長度為x,則根據題意可得:平行于墻面的長度為(30-3x),則S=x(30-3x)=-3+75,,則當x=5時,y有最大值,最大值為75,即飼養室的最大面積為75平方米.考點:一元二次方程的應用.13、6【分析】根據正比例函數y=kx與反比例函數的圖象交點關于原點對稱,可得出A、B兩點坐標的關系,根據垂直于y軸的直線上任意兩點縱坐標相同,可得出A、C兩點坐標的關系,設A點坐標為(x,-),表示出B、C兩點的坐標,再根據三角形的面積公式即可解答.【詳解】∵正比例函數y=kx與反比例函數的圖象交點關于原點對稱,∴設A點坐標為(x,?),則B點坐標為(?x,),C(?2x,?),∴S=×(?2x?x)?(??)=×(?3x)?(?)=6.故答案為6.【點睛】此題考查正比例函數的性質與反比例函數的性質,解題關鍵在于得出A、C兩點.14、【分析】由已知條件得到,結合∠AOP=∠BOP,可判定△AOP∽△POB,再根據相似三角形的性質得到∠OPA=∠OBP,利用三角形內角和180°與等量代換即可求出∠APB的度數.【詳解】∵∴∵OP平分∠MON∴∠AOP=∠BOP∴△AOP∽△POB∴∠OPA=∠OBP在△OBP中,∠BOP=∠MON=25°∴∠OBP+∠OPB=∴∠OPA+∠OPB=155°即∠APB=155°故答案為:155°.【點睛】本題考查了相似三角形的判定與性質,熟練掌握相似三角形的判定定理是解題的關鍵.15、【分析】過O作BC的平行線交AC與G,由中位線的知識可得出AD:DC=1:2,根據已知和平行線分線段成比例得出AD=DG=GC,AG:GC=2:1,AO:OE=2:1,再由同高不同底的三角形中底與三角形面積的關系可求出BE:EC的比.【詳解】解:如圖,過O作OG∥BC,交AC于G,

∵O是BD的中點,

∴G是DC的中點.

又AD:DC=1:2,

∴AD=DG=GC,

∴AG:GC=2:1,AO:OE=2:1,

∴S△AOB:S△BOE=2

設S△BOE=S,S△AOB=2S,又BO=OD,

∴S△AOD=2S,S△ABD=4S,

∵AD:DC=1:2,

∴S△BDC=2S△ABD=8S,S四邊形CDOE=7S,

∴S△AEC=9S,S△ABE=3S,

∴==【點睛】本題考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運用中位線定理和三角形面積公式.16、5【分析】由垂徑定理可知,在中利用勾股定理即可求出半徑.【詳解】設⊙的半徑為r∵是⊙的一條弦,⊥,∴在中∵∴∴故答案為5【點睛】本題主要考查勾股定理及垂徑定理,掌握勾股定理及垂徑定理的內容是解題的關鍵.17、【分析】根據(-2,n)和(1,n)可以確定函數的對稱軸x=1,再由對稱軸的x=,即可求出b,于是可求n的值.【詳解】解:拋物線經過(-2,n)和(1,n)兩點,可知函數的對稱軸x=1,

∴=1,

∴b=2;

∴y=-x2+2x+1,

將點(-2,n)代入函數解析式,可得n=-1;

故答案是:-1.【點睛】本題考查二次函數圖象上點的坐標;熟練掌握二次函數圖象上點的對稱性是解題的關鍵.18、且【解析】一元二次方程的定義及判別式的意義可得a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,解不等式組即可求出a的取值范圍.【詳解】∵關于x的一元二次方程ax2-3x+1=1有兩個不相等的實數根,

∴a≠1且△=b2-4ac=(-3)2-4×a×1=9-4a>1,

解得:a<且a≠1.

故答案是:a<且a≠1.【點睛】考查了根的判別式.一元二次方程ax2+bx+c=1(a≠1)的根與△=b2-4ac有如下關系:(1)△>1?方程有兩個不相等的實數根;(2)△=1?方程有兩個相等的實數根;(3)△<1?方程沒有實數根.三、解答題(共66分)19、(1)詳見解析;(2)詳見解析,A1(﹣3,3);(3)詳見解析,A2(6,6).【解析】(1)根據A、B、C三點坐標畫出圖形即可;(2)作出A、B、C關于軸的對稱點A1、B1、C1即可;(3)延長OC到C2,使得OC2=2OC,同法作出A2,B2即可;【詳解】(1)△ABC如圖所示;(2)△A1B1C1如圖所示;A1(﹣3,3),(3)△A2B2C2如圖所示;A2(6,6).故答案為(﹣3,3),(6,6).【點睛】本題考查作圖﹣位似變換,軸對稱變換等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.20、AP=10﹣5.【分析】先根據題意判斷出△O′PB是等腰直角三角形,由勾股定理求出PB的長,進而可得出AP的長.【詳解】解:連接PO′∵∠OBA′=45°,O′P=O′B,∴∠O′PB=∠O′BP=45°,∠PO′B=90°∴△O′PB是等腰直角三角形,∵AB=10,∴O′P=O′B=5,∴PB==BO′=5,∴AP=AB﹣BP=10﹣5.【點睛】本題考查了旋轉的性質、勾股定理、等腰直角三角形的判定,根據旋轉性質判定出△O′PB是等腰直角三角形解題的關鍵.21、(1)連結OC,證明見詳解,(2)AB=1.【分析】(1)連接OC,根據題意可證得∠CAD+∠DCA=30°,再根據角平分線的性質,得∠DCO=30°,則CD為⊙O的切線;(2)過O作OF⊥AB,則∠OCD=∠CDA=∠OFD=30°,得四邊形OCDF為矩形,設AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(1-x)2=25,從而求得x的值,由勾股定理得出AB的長.【詳解】(1)連接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO為⊙O半徑,∴CD為⊙O的切線;(2)過O作OF⊥AB,垂足為F,∴∠OCD=∠CDA=∠OFD=30°,∴四邊形DCOF為矩形,∴OC=FD,OF=CD.∵DC+DA=1,設AD=x,則OF=CD=1-x,∵⊙O的直徑為10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(1-x)2=25,化簡得x2-11x+18=0,解得x1=2,x2=3.∵CD=1-x大于0,故x=3舍去,∴x=2,從而AD=2,AF=5-2=3,∵OF⊥AB,由垂徑定理知,F為AB的中點,∴AB=2AF=1.【點睛】本題考查切線的證法與弦長問題,涉及切線的判定和性質;.勾股定理;矩形的判定和性質以及垂徑定理的知識,關鍵掌握好這些知識并靈活運用解決問題.22、(1);(2)小島、相距.【解析】(1)如圖,過點作,垂足為,在中,先求出DE長,然后在在中,根據正弦的定義由即可求得答案;(2)過點作,垂足為,則四邊形BEDF是矩形,在中,利用勾股定理求出BE長,再由矩形的性質可得,,繼而得CF長,在中,利用勾股定理求出CD長即可.【詳解】(1)如圖,過點作,垂足為,在中,,,∴在中,,∴;(2)過點作,垂足為,則四邊形BEDF是矩形,在中,,,∴,∵四邊形是矩形,∴,,∴,在中,,因此小島、相距.【點睛】本題考查了解直角三角形的應用,正確添加輔助線構建直角三角形,靈活運用相應三角形函數是解題的關鍵.23、(1)1;(2)①x1=﹣2,x2=6;②x1=,x2=.【分析】(1)根據二次根式的乘法公式、30°的余弦值、60°的正切值和乘方的性質計算即可;(2)①利用直接開方法解一元二次方程即可;②利用公式法:解一元二次方程即可【詳解】(1)﹣2cos30°﹣tan60°+(﹣1)2018=(2)①∵(x﹣2)2﹣16=0,∴(x﹣2)2=16,∴x﹣2=4或x﹣2=﹣4,解得:x1=﹣2,x2=6;②∵a=5,b=2,c=﹣1,∴△=b2-4ac=22﹣4×5×(﹣1)=24>0,則==,即x1=,x2=.【點睛】此題考查的是含特殊角的銳角三角函數值的混合運算和解一元二次方程,掌握二次根式的乘法公式、30°的余弦值、60°的正切值、乘方的性質和利用直接開方法和公式法解一元二次方程是解決此題的關鍵.24、(1)證明見解析;(2)40°.【分析】(1)連接BC,利用直徑所對的圓周角是直角、線段垂直平分線性質、同弧所對的圓周角相等、等角對等邊即可證明.(2)利用三角形外角等于不相鄰的兩個內角和、利用直徑所對的圓周角是直角、直角三角形兩銳角互余即可解答.【詳解】(1)證明:連接BC,∵AB是⊙O的直徑,∴∠ABC=90°,即BC⊥AD,∵CD=AC,∴AB=BD,∴∠A=∠D,∴∠CEB=∠A,∴∠CEB=∠D,∴CE=CD.(2)解:連接AE.∵∠ABE=∠A+∠D=50°,∵AB是⊙O的直徑,∴∠AEB=90°,∴∠BAE=90°﹣50°=40°.【點睛】本題考查圓周角定理,等腰三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.25、(1)①E;②;(2).【分析】(1)①分別計算出C、D、E到A、B的距離,根據“限距點”的含義即可判定;②畫出圖形,由“限距點”的定義可知,當點P位于直線上x軸上方并且AP時,點P是線段AB的“限距點”,據此可解;(2)畫出圖形,可知當時,直線上存在線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論