2022-2023學年甘肅省蘭州市第九中學數學九年級上冊期末質量檢測模擬試題含解析_第1頁
2022-2023學年甘肅省蘭州市第九中學數學九年級上冊期末質量檢測模擬試題含解析_第2頁
2022-2023學年甘肅省蘭州市第九中學數學九年級上冊期末質量檢測模擬試題含解析_第3頁
2022-2023學年甘肅省蘭州市第九中學數學九年級上冊期末質量檢測模擬試題含解析_第4頁
2022-2023學年甘肅省蘭州市第九中學數學九年級上冊期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題3分,共30分)1.已知拋物線(其中是常數,)的頂點坐標為.有下列結論:①若,則;②若點與在該拋物線上,當時,則;③關于的一元二次方程有實數解.其中正確結論的個數是()A. B. C. D.2.如圖,反比例函數y=與y=的圖象上分別有一點A,B,且AB∥x軸,AD⊥x軸于D,BC⊥x軸于C,若矩形ABCD的面積為8,則b﹣a=()A.8 B.﹣8 C.4 D.﹣43.如圖,將正方形OABC放在平面直角坐標系中,O是原點,點A的坐標為(1,),則點C的坐標為()A.(-,1) B.(-1,) C.(,1) D.(-,-1)4.下面是一位美術愛好者利用網格圖設計的幾個英文字母的圖形,你認為其中是中心對稱圖形,但不是軸對稱圖形的是A. B. C. D.5.以下給出的幾何體中,主視圖是矩形,俯視圖是圓的是()A. B. C. D.6.用配方法解方程x2+2x﹣5=0時,原方程應變形為()A.(x﹣1)2=6 B.(x+1)2=6 C.(x+2)2=9 D.(x﹣2)2=97.拋物線經過平移得到拋物線,平移的方法是()A.向左平移1個單位,再向下平移2個單位B.向右平移1個單位,再向下平移2個單位C.向左平移1個單位,再向上平移2個單位D.向右平移1個單位,再向上平移2個單位8.已知AB、CD是⊙O的兩條弦,AB∥CD,AB=6,CD=8,⊙O的半徑為5,則AB與CD的距離是()A.1 B.7 C.1或7 D.無法確定9.下列圖形中,既是軸對稱圖形又是中心對稱圖形的共有()A.1個 B.2個 C.3個 D.4個10.如圖等邊△ABC的邊長為4cm,點P,點Q同時從點A出發點,Q沿AC以1cm/s的速度向點C運動,點P沿A﹣B﹣C以2cm/s的速度也向點C運動,直到到達點C時停止運動,若△APQ的面積為S(cm2),點Q的運動時間為t(s),則下列最能反映S與t之間大致圖象是()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標系中,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(4,1)在AB邊上,把△CDB繞點C旋轉90°,點D的對應點為點D′,則OD′的長為_________.12.b和2的比例中項是4,則b=__.13.已知二次函數的部分圖象如圖所示,則一元二次方程的解為:_____.14.已知A、B是線段MN上的兩點,MN=4,MA=1,MB>1.以A為中心順時針旋轉點M,以B為中心逆時針旋轉點N,使M、N兩點重合成一點C,構成△ABC.設AB=x,請解答:(1)x的取值范圍______;(2)若△ABC是直角三角形,則x的值是______.15.如圖,在中,點D、E分別在AB、AC邊上,,,,則__________.16.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=,將Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,點B經過的路徑為,則圖中陰影部分的面積是_____.17.已知線段a=4,b=9,則a,b的比例中項線段長等于________.18.拋物線y=x2﹣4x的對稱軸為直線_____.三、解答題(共66分)19.(10分)如圖所示,已知在平面直角坐標系中,拋物線(其中、為常數,且)與軸交于點,它的坐標是,與軸交于點,此拋物線頂點到軸的距離為4.(1)求拋物線的表達式;(2)求的正切值;(3)如果點是拋物線上的一點,且,試直接寫出點的坐標.20.(6分)如圖1,內接于,AD是直徑,的平分線交BD于H,交于點C,連接DC并延長,交AB的延長線于點E.(1)求證:;(2)若,求的值(3)如圖2,連接CB并延長,交DA的延長線于點F,若,求的面積.21.(6分)4張相同的卡片分別寫有數字﹣1、﹣3、4、6,將這些卡片的背面朝上,并洗勻.(1)從中任意抽取1張,抽到的數字大于0的概率是______;(2)從中任意抽取1張,并將卡片上的數字記作二次函數y=ax2+bx中的a,再從余下的卡片中任意抽取1張,并將卡片上的數字記作二次函數y=ax2+bx中的b,利用樹狀圖或表格的方法,求出這個二次函數圖象的對稱軸在y軸右側的概率.22.(8分)如圖,拋物線y=x2+bx+c與x軸交于點A和B(3,0),與y軸交于點C(0,3).(1)求拋物線的解析式;(2)若點M是拋物線上在x軸下方的動點,過M作MN∥y軸交直線BC于點N,求線段MN的最大值;(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.23.(8分)如圖,一次函數的圖象與反比例函數(為常數,且)的圖象交于A(1,a)、B兩點.(1)求反比例函數的表達式及點B的坐標;(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.24.(8分)計算:2cos230°+﹣sin60°.25.(10分)已知△ABC,AB=AC,BD是∠ABC的角平分線,EF是BD的中垂線,且分別交BC于點E,交AB于點F,交BD于點K,連接DE,DF.(1)證明:DE//AB;(2)若CD=3,求四邊形BEDF的周長.26.(10分)如圖所示,在方格紙中,△ABC的三個頂點及D,E,F,G,H五個點分別位于小正方形的頂點上.(1)現以D,E,F,G,H中的三個點為頂點畫三角形,在所畫的三角形中與△ABC不全等但面積相等的三角形是(只需要填一個三角形);(2)先從D,E兩個點中任意取一個點,再從F,G,H三個點中任意取兩個不同的點,以所取的這三個點為頂點畫三角形,畫樹狀圖求所畫三角形與△ABC面積相等的概率.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】利用二次函數的性質一一進行判斷即可得出答案.【詳解】解:①拋物線(其中是常數,)頂點坐標為,,,,∴c>>0.故①小題結論正確;②頂點坐標為,點關于拋物線的對稱軸的對稱點為點與在該拋物線上,,,,當時,隨的增大而增大,故此小題結論正確;③把頂點坐標代入拋物線中,得,一元二次方程中,,關于的一元二次方程無實數解.故此小題錯誤.故選:C.【點睛】本題是一道關于二次函數的綜合性題目,具有一定的難度,需要學生熟練掌握二次函數的性質并能夠熟練運用.2、A【分析】根據反比例函數系數k的幾何意義得到|a|=S矩形ADOE,|b|=S矩形BCOE,進而得到|b|+|a|=8,然后根據a<0,b>0可得答案.【詳解】解:如圖,∵AB∥x軸,AD⊥x軸于D,BC⊥x軸于C,∴|a|=S矩形ADOE,|b|=S矩形BCOE,∵矩形ABCD的面積為8,∴S矩形ABCD=S矩形ADOE+S矩形BCOE=8,∴|b|+|a|=8,∵反比例函數y=在第二象限,反比例函數y=在第一象限,∴a<0,b>0,∴|b|+|a|=b﹣a=8,故選:A.【點睛】本題考查了反比例函數y=(k≠0)的系數k的幾何意義:從反比例函數y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.3、A【解析】試題分析:作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.如圖:過點A作AD⊥x軸于D,過點C作CE⊥x軸于E,根據同角的余角相等求出∠OAD=∠COE,再利用“角角邊”證明△AOD和△OCE全等,根據全等三角形對應邊相等可得OE=AD,CE=OD,然后根據點C在第二象限寫出坐標即可.∴點C的坐標為(-,1)故選A.考點:1、全等三角形的判定和性質;2、坐標和圖形性質;3、正方形的性質.4、B【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形;

B、不是軸對稱圖形,是中心對稱圖形;

C、是軸對稱圖形,也是中心對稱圖形;

D、不是軸對稱圖形,也不是中心對稱圖形.

故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180°后與原圖重合.5、D【分析】根據幾何體的正面看得到的圖形,可得答案.【詳解】A、主視圖是圓,俯視圖是圓,故A不符合題意;B、主視圖是矩形,俯視圖是矩形,故B不符合題意;C、主視圖是三角形,俯視圖是圓,故C不符合題意;D、主視圖是個矩形,俯視圖是圓,故D符合題意;故選D.【點睛】本題考查了簡單幾何體的三視圖,熟記簡單幾何的三視圖是解題關鍵.6、B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故選B.7、D【解析】∵拋物線y=-3(x+1)2-2的頂點坐標為(-1,-2),平移后拋物線y=-3x2的頂點坐標為(0,0),∴平移方法為:向右平移1個單位,再向上平移2個單位.故選D.8、C【分析】由于弦AB、CD的具體位置不能確定,故應分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【詳解】解:①當弦AB和CD在圓心同側時,如圖①,過點O作OF⊥CD,垂足為F,交AB于點E,連接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO==3,OF==4,∴EF=OF﹣OE=1;②當弦AB和CD在圓心異側時,如圖②,過點O作OE⊥AB于點E,反向延長OE交AD于點F,連接OA,OC,EF=OF+OE=1,所以AB與CD之間的距離是1或1.故選:C.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧.也考查了勾股定理及分類討論的思想的應用.9、B【分析】根據中心對稱圖形和軸對稱圖形的概念即可得出答案.【詳解】根據中心對稱圖形和軸對稱圖形的概念,可以判定既是中心對稱圖形又是軸對稱圖形的有第3第4個共2個.故選B.考點:1.中心對稱圖形;2.軸對稱圖形.10、C【分析】根據等邊三角形的性質可得,然后根據點P的位置分類討論,分別求出S與t的函數關系式即可得出結論.【詳解】解:∵△ABC為等邊三角形∴∠A=∠C=60°,AB=BC=AC=4當點P在AB邊運動時,根據題意可得AP=2t,AQ=t∴△APQ為直角三角形S=AQ×PQ=AQ×(AP·sinA)=×t×2t×=t2,圖象為開口向上的拋物線,當點P在BC邊運動時,如下圖,根據題意可得PC=2×4-2t=8-2t,AQ=tS=×AQ×PH=×AQ×(PC·sinC)=×t×(8﹣2t)×=t(4﹣t)=-t2+,圖象為開口向下的拋物線;故選:C.【點睛】此題考查的是根據動點判定函數的圖象,掌握三角形面積的求法、二次函數的圖象及性質和銳角三角函數是解決此題的關鍵.二、填空題(每小題3分,共24分)11、3或【分析】由題意,可分為逆時針旋轉和順時針旋轉進行分析,分別求出點OD′的長,即可得到答案.【詳解】解:因為點D(4,1)在邊AB上,

所以AB=BC=4,BD=4-1=3;

(1)若把△CDB順時針旋轉90°,

則點D′在x軸上,OD′=BD=3,

所以D′(3,0);∴;

(2)若把△CDB逆時針旋轉90°,

則點D′到x軸的距離為8,到y軸的距離為3,

所以D′(3,8),∴;

故答案為:3或.【點睛】此題主要考查了坐標與圖形變化——旋轉,考查了分類討論思想的應用,解答此題的關鍵是要注意分順時針旋轉和逆時針旋轉兩種情況.12、1.【分析】根據題意,b與2的比例中項為4,也就是b:4=4:2,然后再進一步解答即可.【詳解】根據題意可得:B:4=4:2,解得b=1,故答案為:1.【點睛】本題主要考查了比例線段,解題本題的關鍵是理解兩個數的比例中項,然后列出比例式進一步解答.13、【解析】依題意得二次函數y=的對稱軸為x=-1,與x軸的一個交點為(-3,0),∴拋物線與x軸的另一個交點橫坐標為(-1)×2-(-3)=1,∴交點坐標為(1,0)∴當x=1或x=-3時,函數值y=0,即,∴關于x的一元二次方程的解為x1=?3或x2=1.故答案為:.點睛:本題考查的是關于二次函數與一元二次方程,在解題過程中,充分利用二次凹函數圖象,根據圖象提取有用條件來解答,這樣可以降低題的難度,從而提高解題效率.14、1<x<2x或x.【分析】(1)因為所求AB或x在△ABC中,所以可利用三角形三邊之間的關系即兩邊之和大于第三邊,兩邊之差小于第三邊進行解答.(2)應該分情況討論,因為不知道在三角形中哪一個是作為斜邊存在的.所以有三種情況,即:①若AC為斜邊,則1=x2+(3-x)2,即x2-3x+4=0,無解;②若AB為斜邊,則x2=(3﹣x)2+1,解得x,滿足1<x<2;③若BC為斜邊,則(3﹣x)2=1+x2,解得:x,滿足1<x<2;【詳解】解:(1)∵MN=4,MA=1,AB=x,∴BN=4﹣1﹣x=3﹣x,由旋轉的性質得:MA=AC=1,BN=BC=3﹣x,由三角形的三邊關系得,∴x的取值范圍是1<x<2.故答案為:1<x<2;(2)∵△ABC是直角三角形,∴若AC為斜邊,則1=x2+(3﹣x)2,即x2﹣3x+4=0,無解,若AB為斜邊,則x2=(3﹣x)2+1,解得:x,滿足1<x<2,若BC為斜邊,則(3﹣x)2=1+x2,解得:x,滿足1<x<2,故x的值為:x或x.故答案為:x或x.【點睛】本題主要考查了旋轉的性質,一元一次不等式組的應用,三角形的三邊關系,掌握一元一次不等式組的應用,旋轉的性質,三角形的三邊關系是解題的關鍵.15、【分析】由,,即可求得的長,又由,根據平行線分線段成比例定理,可得,則可求得答案.【詳解】解:,,,,,.故答案為:.【點睛】此題考查了相似三角形的判定和性質,此題比較簡單,注意掌握比例線段的對應關系是解此題的關鍵.16、【解析】先根據勾股定理得到AB=,再根據扇形的面積公式計算出S扇形ABD,由旋轉的性質得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【詳解】解:如圖,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.【點睛】本題考查了扇形的面積公式:S=,也考查了勾股定理以及旋轉的性質.17、1【分析】根據比例中項的定義,列出比例式即可求解.【詳解】解:根據比例中項的概念結合比例的基本性質,得:比例中項的平方等于兩條線段的乘積,

∴,即,解得,(不合題意,舍去)

故答案為:1.【點睛】此題考查了比例線段;理解比例中項的概念,注意線段不能是負數.18、x=1.【分析】用對稱軸公式直接求解.【詳解】拋物線y=x1﹣4x的對稱軸為直線x==﹣=1.故答案為x=1.【點睛】本題主要考查二次函數的性質,掌握二次函數的對稱軸公式x=是本題的解題關鍵..三、解答題(共66分)19、(1);(2);(2)點的坐標是或【分析】(1)先求得拋物線的對稱軸方程,然后再求得點C的坐標,設拋物線的解析式為y=a(x+1)2+4,將點(-2,0)代入求得a的值即可;

(2)先求得A、B、C的坐標,然后依據兩點間的距離公式可得到BC、AB、AC的長,然后依據勾股定理的逆定理可證明∠ABC=90°,最后,依據銳角三角函數的定義求解即可;

(2)記拋物線與x軸的另一個交點為D.先求得D(1,0),然后再證明∠DBO=∠CAB,從而可證明∠CAO=ABD,故此當點P與點D重合時,∠ABP=∠CAO;當點P在AB的上時.過點P作PE∥AO,過點B作BF∥AO,則PE∥BF.先證明∠EPB=∠CAB,則tan∠EPB=,設BE=t,則PE=2t,P(-2t,2+t),將P(-2t,2+t)代入拋物線的解析式可求得t的值,從而可得到點P的坐標.【詳解】解:(1)拋物線的對稱軸為x=-=-1.

∵a<0,

∴拋物線開口向下.

又∵拋物線與x軸有交點,

∴C在x軸的上方,

∴拋物線的頂點坐標為(-1,4).

設拋物線的解析式為y=a(x+1)2+4,將點(-2,0)代入得:4a+4=0,解得:a=-1,

∴拋物線的解析式為y=-x2-2x+2.

(2)將x=0代入拋物線的解析式得:y=2,

∴B(0,2).

∵C(-1,4)、B(0,2)、A(-2,0),

∴BC=,AB=2,AC=2,

∴BC2+AB2=AC2,

∴∠ABC=90°.

∴.即的正切值等于.

(2)如圖1所示:記拋物線與x軸的另一個交點為D.

∵點D與點A關于x=-1對稱,

∴D(1,0).

∴tan∠DBO=.

又∵由(2)可知:tan∠CAB=.

∴∠DBO=∠CAB.

又∵OB=OA=2,

∴∠BAO=∠ABO.

∴∠CAO=∠ABD.

∴當點P與點D重合時,∠ABP=∠CAO,

∴P(1,0).

如圖2所示:當點P在AB的上時.過點P作PE∥AO,過點B作BF∥AO,則PE∥BF.

∵BF∥AO,

∴∠BAO=∠FBA.

又∵∠CAO=∠ABP,

∴∠PBF=∠CAB.

又∵PE∥BF,

∴∠EPB=∠PBF,

∴∠EPB=∠CAB.

∴tan∠EPB=.

設BE=t,則PE=2t,P(-2t,2+t).

將P(-2t,2+t)代入拋物線的解析式得:y=-x2-2x+2得:-9t2+6t+2=2+t,解得t=0(舍去)或t=.

∴P(-,).

綜上所述,點P的坐標為P(1,0)或P(-,).【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了待定系數法求二次函數的解析式、勾股定理的逆定理、等腰直角三角形的性質、銳角三角函數的定義,用含t的式子表示點P的坐標是解題的關鍵.20、(1)見解析;(2);(3)【分析】(1)根據直徑所對的圓周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;(2)連接OC交BD于G,設,根據垂徑定理的推論可得出OC垂直平分BD,進而推出OG為中位線,再判定,利用對應邊成比例即可求出的值;(3)連接OC交BD于G,由(2)可知:OC∥AB,OG=AB,然后利用ASA判定△BHA≌△GHC,設,則,再判定,利用對應邊成比例求出m的值,進而得到AB和AD的長,再用勾股定理求出BD,可求出△BED的面積,由C為DE的中點可得△BEC為△BED面積的一半,即可得出答案.【詳解】(1)證明:∵AD是的直徑∵AC平分在△ACD和△ACE中,∵∠ACD=∠ACE,AC=AC,∠DAC=∠EAC∴△ACD≌△ACE(ASA)(2)如圖,連接OC交BD于G,,設,則,OC=AD=∴OC垂直平分BD又∵O為AD的中點∴OG為△ABD的中位線∴OC∥AB,OG=,CG=(3)如圖,連接OC交BD于G,由(2)可知:OC∥AB,OG=AB∴∠BHA=∠GCH在△BHA和△GHC中,∵∠BHA=∠GCH,AH=CH,∠BHA=∠GHC∴設,則又,∴,∵AD是的直徑又【點睛】本題考查了圓周角定理,垂徑定理的推論,全等三角形的判定和性質,相似三角形的判定和性質,以及勾股定理,是一道圓的綜合問題,解題的關鍵是連接OC利用垂徑定理得到中位線.21、(1);(2).【分析】(1)直接利用概率公式求解;(2)畫樹狀圖展示所有12種等可能的結果數,利用一次函數的性質,找出a、b異號的結果數,然后根據概率公式求解.【詳解】(1)∵共由4種可能,抽到的數字大于0的有2種,∴從中任意抽取1張,抽到的數字大于0的概率是,故答案為:(2)畫樹狀圖為:共有12種等可能的結果數,其中a、b異號有8種結果,∴這個二次函數的圖象的對稱軸在y軸右側的概率為=.【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比,熟練掌握a、b異號時,對稱軸在y軸右側是解題關鍵.22、(1)y=x2﹣4x+1;(2);(1)見解析.【分析】(1)利用待定系數法進行求解即可;(2)設點M的坐標為(m,m2﹣4m+1),求出直線BC的解析,根據MN∥y軸,得到點N的坐標為(m,﹣m+1),由拋物線的解析式求出對稱軸,繼而確定出1<m<1,用含m的式子表示出MN,繼而利用二次函數的性質進行求解即可;(1)分AB為邊或為對角線進行討論即可求得.【詳解】(1)將點B(1,0)、C(0,1)代入拋物線y=x2+bx+c中,得:,解得:,故拋物線的解析式為y=x2﹣4x+1;(2)設點M的坐標為(m,m2﹣4m+1),設直線BC的解析式為y=kx+1,把點B(1,0)代入y=kx+1中,得:0=1k+1,解得:k=﹣1,∴直線BC的解析式為y=﹣x+1,∵MN∥y軸,∴點N的坐標為(m,﹣m+1),∵拋物線的解析式為y=x2﹣4x+1=(x﹣2)2﹣1,∴拋物線的對稱軸為x=2,∴點(1,0)在拋物線的圖象上,∴1<m<1.∵線段MN=﹣m+1﹣(m2﹣4m+1)=﹣m2+1m=﹣(m﹣)2+,∴當m=時,線段MN取最大值,最大值為;(1)存在.點F的坐標為(2,﹣1)或(0,1)或(4,1).當以AB為對角線,如圖1,∵四邊形AFBE為平行四邊形,EA=EB,∴四邊形AFBE為菱形,∴點F也在對稱軸上,即F點為拋物線的頂點,∴F點坐標為(2,﹣1);當以AB為邊時,如圖2,∵四邊形AFBE為平行四邊形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的橫坐標為0,F2的橫坐標為4,對于y=x2﹣4x+1,當x=0時,y=1;當x=4時,y=16﹣16+1=1,∴F點坐標為(0,1)或(4,1),綜上所述,F點坐標為(2,﹣1)或(0,1)或(4,1).【點睛】本題考查了二次函數的綜合題,涉及了待定系數法,二次函數的性質,平行四邊形的性質,菱形的判定等,綜合性較強,有一定的難度,熟練掌握相關知識,正確進行分類討論是解題的關鍵.23、(1),;(2)P,.【解析】試題分析:(1)由點A在一次函數圖象上,結合一次函數解析式可求出點A的坐標,再由點A的坐標利用待定系數法即可求出反比例函數解析式,聯立兩函數解析式成方程組,解方程組即可求出點B坐標;(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結合點B的坐標找出點D的坐標,設直線AD的解析式為y=mx+n,結合點A、D的坐標利用待定系數法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結合三角形的面積公式即可得出結論.試題解析:(1)把點A(1,a)代入一次函數y=-x+4,得:a=-1+4,解得:a=3,∴點A的坐標為(1,3).把點A(1,3)代入反比例函數y=,得:3=k,∴反比例函數的表達式y=,聯立兩個函數關系式成方程組得:,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論