




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等比數列的前項和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知是雙曲線的左、右焦點,若點關于雙曲線漸近線的對稱點滿足(為坐標原點),則雙曲線的漸近線方程為()A. B. C. D.3.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.4.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數(即質數)的和”,如,.在不超過20的素數中,隨機選取兩個不同的數,其和等于20的概率是()A. B. C. D.以上都不對5.已知函數,則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.6.若的展開式中二項式系數和為256,則二項式展開式中有理項系數之和為()A.85 B.84 C.57 D.567.已知是函數圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.8.數列滿足:,則數列前項的和為A. B. C. D.9.已知函數(,)的一個零點是,函數圖象的一條對稱軸是直線,則當取得最小值時,函數的單調遞增區間是()A.() B.()C.() D.()10.已知集合,,若,則()A.或 B.或 C.或 D.或11.已知函數f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數)的圖象關于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.412.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若,則___________.14.已知實數x,y滿足,則的最大值為____________.15.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為16.某城市為了解該市甲、乙兩個旅游景點的游客數量情況,隨機抽取了這兩個景點20天的游客人數,得到如下莖葉圖:由此可估計,全年(按360天計算)中,游客人數在內時,甲景點比乙景點多______天.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.18.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現統計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數表:亮燈時長/頻數1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設表示這10000盞燈在某一時刻亮燈的數目.①求的數學期望和方差;②若隨機變量滿足,則認為.假設當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.19.(12分)如圖,四棱錐中,底面是邊長為的菱形,,點分別是的中點.(1)求證:平面;(2)若,求直線與平面所成角的正弦值.20.(12分)在以為頂點的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.21.(12分)表示,中的最大值,如,己知函數,.(1)設,求函數在上的零點個數;(2)試探討是否存在實數,使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.22.(10分)如圖,在四棱錐P﹣ABCD中,底面ABCD為菱形,PA⊥底面ABCD,∠BAD=60°,AB=PA=4,E是PA的中點,AC,BD交于點O.(1)求證:OE∥平面PBC;(2)求三棱錐E﹣PBD的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據等比數列的前項和公式,判斷出正確選項.【詳解】由于數列是等比數列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【點睛】本小題主要考查充分、必要條件的判斷,考查等比數列前項和公式,屬于基礎題.2、B【解析】
先利用對稱得,根據可得,由幾何性質可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關鍵,屬于中檔題.3、D【解析】
根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.4、A【解析】
首先確定不超過的素數的個數,根據古典概型概率求解方法計算可得結果.【詳解】不超過的素數有,,,,,,,,共個,從這個素數中任選個,有種可能;其中選取的兩個數,其和等于的有,,共種情況,故隨機選出兩個不同的數,其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.5、D【解析】
先求函數在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數對稱軸方程為在區間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數的函數的單調性及充分不必要條件,要注意二次函數零點的求法,屬于中檔題.6、A【解析】
先求,再確定展開式中的有理項,最后求系數之和.【詳解】解:的展開式中二項式系數和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數之和為:故選:A【點睛】考查二項式的二項式系數及展開式中有理項系數的確定,基礎題.7、C【解析】
先畫出函數圖像和圓,可知,若設,則,所以,而要求的最小值,只要取得最大值,若設圓的圓心為,則,所以只要取得最小值,若設,則,然后構造函數,利用導數求其最小值即可.【詳解】記圓的圓心為,設,則,設,記,則,令,因為在上單調遞增,且,所以當時,;當時,,則在上單調遞減,在上單調遞增,所以,即,所以(當時等號成立).故選:C【點睛】此題考查的是兩個向量的數量積的最小值,利用了導數求解,考查了轉化思想和運算能力,屬于難題.8、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.9、B【解析】
根據函數的一個零點是,得出,再根據是對稱軸,得出,求出的最小值與對應的,寫出即可求出其單調增區間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因為,所以().又,所以,所以,令(),則().因此,當取得最小值時,的單調遞增區間是().故選:B【點睛】此題考查三角函數的對稱軸和對稱點,在對稱軸處取得最值,對稱點處函數值為零,屬于較易題目.10、B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.11、C【解析】
根據對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點睛】本題主要考查函數的對稱性的應用,屬于中檔題.12、B【解析】
根據空間中線線、線面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于常考題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據題意,利用函數奇偶性的定義判斷函數的奇偶性,利用函數奇偶性的性質求解即可.【詳解】因為函數,其定義域為,所以其定義域關于原點對稱,又,所以函數為奇函數,因為,所以.故答案為:【點睛】本題考查函數奇偶性的判斷及其性質;考查運算求解能力;熟練掌握函數奇偶性的判斷方法是求解本題的關鍵;屬于中檔題、常考題型.14、1【解析】
直接用表示出,然后由不等式性質得出結論.【詳解】由題意,又,∴,即,∴的最大值為1.故答案為:1.【點睛】本題考查不等式的性質,掌握不等式的性質是解題關鍵.15、【解析】
根據向量共線定理得A,B,C三點共線,再根據點斜式得結果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.16、72【解析】
根據給定的莖葉圖,得到游客人數在內時,甲景點共有7天,乙景點共有3天,進而求得全年中,甲景點比乙景點多的天數,得到答案.【詳解】由題意,根據給定的莖葉圖可得,在隨機抽取了這兩個景點20天的游客人數中,游客人數在內時,甲景點共有7天,乙景點共有3天,所以在全年)中,游客人數在內時,甲景點比乙景點多天.故答案為:.【點睛】本題主要考查了莖葉圖的應用,其中解答中熟記莖葉圖的基本知識,合理推算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、,;當時,棧道總長度最短.【解析】
連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據求導得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調遞減極小值單調遞增故時,所以當時,棧道總長度最短.【點睛】本題主要考查導數在函數當中的應用,屬于中檔題.18、(1)(2)①,,②72【解析】
(1)將每組數據的組中值乘以對應的頻率,然后再將結果相加即可得到亮燈時長的平均數,將此平均數除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據條件計算出的取值范圍,然后根據并結合正態分布概率的對稱性,求解出在滿足取值范圍下對應的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據頻數分布表求解平均數、幾何概型(長度模型)、二項分布的均值與方差、正態分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態分布中的概率,一定要活用正態分布圖象的對稱性對應概率的對稱性.19、(1)見解析;(2).【解析】
(1)取的中點,連接,通過證明,即可證得;(2)建立空間直角坐標系,利用向量的坐標表示即可得解.【詳解】(1)證明:取的中點,連接.是的中點,,又,四邊形是平行四邊形.,又平面平面,平面.(2),,同理可得:,又平面.連接,設,則,建立空間直角坐標系.設平面的法向量為,則,則,取.直線與平面所成角的正弦值為.【點睛】此題考查證明線面平行,求線面角的大小,關鍵在于熟練掌握線面平行的證明方法,法向量法求線面角的基本方法,根據公式準確計算.20、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點,取中點,連結,證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標系,平面的法向量為,平面的法向量為,計算夾角得到答案.【詳解】(Ⅰ)連接交于點,取中點,連結因為為菱形,所以.因為,所以.因為二面角為直二面角,所以平面平面,且平面平面,所以平面所以因為所以是平行四邊形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標系.設設平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力.21、(1)個;(1)存在,.【解析】試題分析:(1)設,對其求導,及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構造,通過求導得到最值,得到滿足條件的的范圍.試題解析:(1)設,.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設,結合與在上圖象可知,這兩個函數的圖象在上有兩個交點,即在上零點的個數為1...........................5分(或由方程在上有兩根可得)(1)假設存在實數,使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設,令,得遞增;令,得遞減,∴,當即時,,∴,∵,∴4.故當時,對恒成立,.......................8分當即時,在上遞減,∴.∵,∴,故當時,對恒成立........
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論