


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.關于的一元二次方程有兩個不相等的實數根,則實數的取值范圍是A. B. C. D.2.如圖,將矩形ABCD沿對角線BD折疊,使C落在C'處,BC'交AD于E,則下列結論不一定成立的是()A.AD=BC' B.∠EBD=∠EDBC.ΔABE~ΔCBD D.sin3.下列計算中,正確的是()A.a?3a=4a2 B.2a+3a=5a2C.(ab)3=a3b3 D.7a3÷14a2=2a4.下列圖形中,是中心對稱但不是軸對稱圖形的為()A. B.C. D.5.對于任意實數k,關于x的方程的根的情況為A.有兩個相等的實數根 B.沒有實數根C.有兩個不相等的實數根 D.無法確定6.的相反數是()A. B.- C. D.-7.如圖,若a<0,b>0,c<0,則拋物線y=ax2+bx+c的大致圖象為()A. B. C. D.8.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-19.根據《九章算術》的記載中國人最早使用負數,下列負數中最大的是()A.-1 B.-12 C.-10.甲、乙兩名同學在一次用頻率去估計概率的實驗中,統計了某一結果出現的頻率繪出的統計圖如圖,則符合這一結果的實驗可能是()A.擲一枚正六面體的骰子,出現1點的概率B.拋一枚硬幣,出現正面的概率C.從一個裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率D.任意寫一個整數,它能被2整除的概率二、填空題(本大題共6個小題,每小題3分,共18分)11.如果m,n互為相反數,那么|m+n﹣2016|=___________.12.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內切圓半徑為__________.13.因式分解:__________.14.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.15.如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當△DEB是直角三角形時,DF的長為_____.16.已知二次函數中,函數y與x的部分對應值如下:...-10123......105212...則當時,x的取值范圍是_________.三、解答題(共8題,共72分)17.(8分)某蔬菜加工公司先后兩次收購某時令蔬菜200噸,第一批蔬菜價格為2000元/噸,因蔬菜大量上市,第二批收購時價格變為500元/噸,這兩批蔬菜共用去16萬元.(1)求兩批次購蔬菜各購進多少噸?(2)公司收購后對蔬菜進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤800元.要求精加工數量不多于粗加工數量的三倍.為獲得最大利潤,精加工數量應為多少噸?最大利潤是多少?18.(8分)武漢二中廣雅中學為了進一步改進本校九年級數學教學,提高學生學習數學的興趣.校教務處在九年級所有班級中,每班隨機抽取了6名學生,并對他們的數學學習情況進行了問卷調查:我們從所調查的題目中,特別把學生對數學學習喜歡程度的回答(喜歡程度分為:“非常喜歡”、“比較喜歡”、“不太喜歡”、“很不喜歡”,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統計.現將統計結果繪制成如下兩幅不完整的統計圖.請你根據以上提供的信息,解答下列問題:(1)補全上面的條形統計圖和扇形統計圖;(2)所抽取學生對數學學習喜歡程度的眾數是,圖②中所在扇形對應的圓心角是;(3)若該校九年級共有960名學生,請你估算該年級學生中對數學學習“不太喜歡”的有多少人?19.(8分)在平面直角坐標系中,某個函數圖象上任意兩點的坐標分別為(﹣t,y1)和(t,y2)(其中t為常數且t>0),將x<﹣t的部分沿直線y=y1翻折,翻折后的圖象記為G1;將x>t的部分沿直線y=y2翻折,翻折后的圖象記為G2,將G1和G2及原函數圖象剩余的部分組成新的圖象G.例如:如圖,當t=1時,原函數y=x,圖象G所對應的函數關系式為y=.(1)當t=時,原函數為y=x+1,圖象G與坐標軸的交點坐標是.(2)當t=時,原函數為y=x2﹣2x①圖象G所對應的函數值y隨x的增大而減小時,x的取值范圍是.②圖象G所對應的函數是否有最大值,如果有,請求出最大值;如果沒有,請說明理由.(3)對應函數y=x2﹣2nx+n2﹣3(n為常數).①n=﹣1時,若圖象G與直線y=2恰好有兩個交點,求t的取值范圍.②當t=2時,若圖象G在n2﹣2≤x≤n2﹣1上的函數值y隨x的增大而減小,直接寫出n的取值范圍.20.(8分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉過程中,半圓弧與直線CD只有一個交點時,設此交點與點C的距離為d,直接寫出d的取值范圍.21.(8分)(問題情境)張老師給愛好學習的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運用上述解答中所積累的經驗和方法完成下列兩題:[結論運用]如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.22.(10分)數學活動小組的小穎、小明和小華利用皮尺和自制的兩個直角三角板測量學校旗桿MN的高度,如示意圖,△ABC和△A′B′C′是他們自制的直角三角板,且△ABC≌△A′B′C′,小穎和小明分別站在旗桿的左右兩側,小穎將△ABC的直角邊AC平行于地面,眼睛通過斜邊AB觀察,一邊觀察一邊走動,使得A、B、M共線,此時,小華測量小穎距離旗桿的距離DN=19米,小明將△A′B′C′的直角邊B′C′平行于地面,眼睛通過斜邊B′A′觀察,一邊觀察一邊走動,使得B′、A′、M共線,此時,小華測量小明距離旗桿的距離EN=5米,經測量,小穎和小明的眼睛與地面的距離AD=1米,B′E=1.5米,(他們的眼睛與直角三角板頂點A,B′的距離均忽略不計),且AD、MN、B′E均與地面垂直,請你根據測量的數據,計算旗桿MN的高度.23.(12分)綜合與實踐﹣猜想、證明與拓廣問題情境:數學課上同學們探究正方形邊上的動點引發的有關問題,如圖1,正方形ABCD中,點E是BC邊上的一點,點D關于直線AE的對稱點為點F,直線DF交AB于點H,直線FB與直線AE交于點G,連接DG,CG.猜想證明(1)當圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學們發現線段GF與GD有確定的數量關系和位置關系,其結論為:;(2)希望小組的同學發現,圖1中的點E在邊BC上運動時,(1)中結論始終成立,為證明這兩個結論,同學們展開了討論:小敏:根據軸對稱的性質,很容易得到“GF與GD的數量關系”…小麗:連接AF,圖中出現新的等腰三角形,如△AFB,…小凱:不妨設圖中不斷變化的角∠BAF的度數為n,并設法用n表示圖中的一些角,可證明結論.請你參考同學們的思路,完成證明;(3)創新小組的同學在圖1中,發現線段CG∥DF,請你說明理由;聯系拓廣:(4)如圖3若將題中的“正方形ABCD”變為“菱形ABCD“,∠ABC=α,其余條件不變,請探究∠DFG的度數,并直接寫出結果(用含α的式子表示).24.計算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據一元二次方程的根的判別式,建立關于m的不等式,求出m的取值范圍即可.【詳解】∵關于x的一元二次方程x2﹣3x+m=0有兩個不相等的實數根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故選A.【點睛】本題考查了根的判別式,解題的關鍵在于熟練掌握一元二次方程根的情況與判別式△的關系,即:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.2、C【解析】分析:主要根據折疊前后角和邊相等對各選項進行判斷,即可選出正確答案.詳解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正確.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正確.D、∵sin∠ABE=AEBE∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=AEED由已知不能得到△ABE∽△CBD.故選C.點睛:本題可以采用排除法,證明A,B,D都正確,所以不正確的就是C,排除法也是數學中一種常用的解題方法.3、C【解析】
根據同底數冪的運算法則進行判斷即可.【詳解】解:A、a?3a=3a2,故原選項計算錯誤;B、2a+3a=5a,故原選項計算錯誤;C、(ab)3=a3b3,故原選項計算正確;D、7a3÷14a2=a,故原選項計算錯誤;故選C.【點睛】本題考點:同底數冪的混合運算.4、C【解析】試題分析:根據軸對稱圖形及中心對稱圖形的定義,結合所給圖形進行判斷即可.A、既不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故本選項正確;D、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.考點:中心對稱圖形;軸對稱圖形.5、C【解析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數根.故選C.6、B【解析】∵+(﹣)=0,∴的相反數是﹣.故選B.7、B【解析】
由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】∵a<0,∴拋物線的開口方向向下,故第三個選項錯誤;∵c<0,∴拋物線與y軸的交點為在y軸的負半軸上,故第一個選項錯誤;∵a<0、b>0,對稱軸為x=>0,∴對稱軸在y軸右側,故第四個選項錯誤.故選B.8、A【解析】
分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點睛】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.9、B【解析】
根據兩個負數,絕對值大的反而小比較.【詳解】解:∵?12>?1>?2∴負數中最大的是?12故選:B.【點睛】本題考查了實數大小的比較,解題的關鍵是知道正數大于0,0大于負數,兩個負數,絕對值大的反而小.10、C【解析】解:A.擲一枚正六面體的骰子,出現1點的概率為,故此選項錯誤;B.擲一枚硬幣,出現正面朝上的概率為,故此選項錯誤;C.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項正確;D.任意寫出一個整數,能被2整除的概率為,故此選項錯誤.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:先用相反數的意義確定出m+n=0,從而求出|m+n﹣1|,∵m,n互為相反數,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案為1.考點:1.絕對值的意義;2.相反數的性質.12、【解析】
根據△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據直角三角形的性質即可求出△AEF的內切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,,
∴△AEF≌△CFD(AAS);
同理可證:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
設M是△AEF的內心,過點M作MH⊥AE于H,
則根據圖1的結論得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內切圓、等邊三角形的性質、全等三角形的性質和判定,切線的性質,圓的切線長定理,根據已知得出AH的長是解題關鍵.13、【解析】
先提取公因式x,再對余下的多項式利用完全平方公式繼續分解.【詳解】解:原式,故答案為:【點睛】本題考查提公因式,熟練掌握運算法則是解題關鍵.14、30【解析】
根據角平分線的定義可得∠PBC=20°,∠PCM=50°,根據三角形外角性質即可求出∠P的度數.【詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30【點睛】本題考查及角平分線的定義及三角形外角性質,三角形的外角等于和它不相鄰的兩個內角的和,熟練掌握三角形外角性質是解題關鍵.15、或【解析】試題分析:如圖4所示;點E與點C′重合時.在Rt△ABC中,BC==4.由翻折的性質可知;AE=AC=3、DC=DE.則EB=2.設DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時.由翻折的性質可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點D在CB上運動,∠DBC′<90°,故∠DBC′不可能為直角.考點:翻折變換(折疊問題).16、0<x<4【解析】
根據二次函數的對稱性及已知數據可知該二次函數的對稱軸為x=2,結合表格中所給數據可得出答案.【詳解】由表可知,二次函數的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數的性質,利用圖表得出二次函數的圖象即可得出函數值得取值范圍,同學們應熟練掌握.三、解答題(共8題,共72分)17、(1)第一次購進40噸,第二次購進160噸;(2)為獲得最大利潤,精加工數量應為150噸,最大利潤是1.【解析】
(1)設第一批購進蒜薹a噸,第二批購進蒜薹b噸.構建方程組即可解決問題.(2)設精加工x噸,利潤為w元,則粗加工(100-x)噸.利潤w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解決問題.【詳解】(1)設第一次購進a噸,第二次購進b噸,,解得,答:第一次購進40噸,第二次購進160噸;(2)設精加工x噸,利潤為w元,w=800x+400(200﹣x)=400x+80000,∵x≤3(200﹣x),解得,x≤150,∴當x=150時,w取得最大值,此時w=1,答:為獲得最大利潤,精加工數量應為150噸,最大利潤是1.【點睛】本題考查了二元一次方程組的應用與一次函數的應用,解題的關鍵是熟練的掌握二元一次方程組的應用與一次函數的應用.18、(1)答案見解析;(2)B,54°;(3)240人.【解析】
(1)根據D程度的人數和所占抽查總人數的百分率即可求出抽查總人數,然后利用總人數減去A、B、D程度的人數即可求出C程度的人數,然后分別計算出各程度人數占抽查總人數的百分率,從而補全統計圖即可;(2)根據眾數的定義即可得出結論,然后利用360°乘A程度的人數所占抽查總人數的百分率即可得出結論;(3)利用960乘C程度的人數所占抽查總人數的百分率即可.【詳解】解:(1)被調查的學生總人數為人,C程度的人數為人,則的百分比為、的百分比為、的百分比為,補全圖形如下:(2)所抽取學生對數學學習喜歡程度的眾數是、圖②中所在扇形對應的圓心角是.故答案為:;;(3)該年級學生中對數學學習“不太喜歡”的有人答:該年級學生中對數學學習“不太喜歡”的有240人.【點睛】此題考查的是條形統計圖和扇形統計圖,結合條形統計圖和扇形統計圖得出有用信息是解決此題的關鍵.19、(1)(2,0);(2)①﹣≤x≤1或x≥;②圖象G所對應的函數有最大值為;(3)①;②n≤或n≥.【解析】
(1)根據題意分別求出翻轉之后部分的表達式及自變量的取值范圍,將y=0代入,求出x值,即可求出圖象G與坐標軸的交點坐標;(2)畫出函數草圖,求出翻轉點和函數頂點的坐標,①根據圖象的增減性可求出y隨x的增大而減小時,x的取值范圍,②根據圖象很容易計算出函數最大值;(3)①將n=﹣1代入到函數中求出原函數的表達式,計算y=2時,x的值.據(2)中的圖象,函數與y=2恰好有兩個交點時t大于右邊交點的橫坐標且-t大于左邊交點的橫坐標,據此求解.②畫出函數草圖,分別計算函數左邊的翻轉點A,右邊的翻轉點C,函數的頂點B的橫坐標(可用含n的代數式表示),根據函數草圖以及題意列出關于n的不等式求解即可.【詳解】(1)當x=時,y=,當x≥時,翻折后函數的表達式為:y=﹣x+b,將點(,)坐標代入上式并解得:翻折后函數的表達式為:y=﹣x+2,當y=0時,x=2,即函數與x軸交點坐標為:(2,0);同理沿x=﹣翻折后當時函數的表達式為:y=﹣x,函數與x軸交點坐標為:(0,0),因為所以舍去.故答案為:(2,0);(2)當t=時,由函數為y=x2﹣2x構建的新函數G的圖象,如下圖所示:點A、B分別是t=﹣、t=的兩個翻折點,點C是拋物線原頂點,則點A、B、C的橫坐標分別為﹣、1、,①函數值y隨x的增大而減小時,﹣≤x≤1或x≥,故答案為:﹣≤x≤1或x≥;②函數在點A處取得最大值,x=﹣,y=(﹣)2﹣2×(﹣)=,答:圖象G所對應的函數有最大值為;(3)n=﹣1時,y=x2+2x﹣2,①參考(2)中的圖象知:當y=2時,y=x2+2x﹣2=2,解得:x=﹣1±,若圖象G與直線y=2恰好有兩個交點,則t>﹣1且-t>,所以;②函數的對稱軸為:x=n,令y=x2﹣2nx+n2﹣3=0,則x=n±,當t=2時,點A、B、C的橫坐標分別為:﹣2,n,2,當x=n在y軸左側時,(n≤0),此時原函數與x軸的交點坐標(n+,0)在x=2的左側,如下圖所示,則函數在AB段和點C右側,故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,解得:n≤;當x=n在y軸右側時,(n≥0),同理可得:n≥;綜上:n≤或n≥.【點睛】在做本題時,可先根據題意分別畫出函數的草圖,根據草圖進行分析更加直觀.在做第(1)問時,需注意翻轉后的函數是分段函數,所以對最終的解要進行分析,排除掉自變量之外的解;(2)根據草圖很直觀的便可求得;(3)①需注意圖象G與直線y=2恰好有兩個交點,多于2個交點的要排除;②根據草圖和增減性,列出不等式,求解即可.20、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】
(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據相似三角形的性質可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據等邊三角形的性質可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當點B′在點D右邊時,半圓交直線CD于點D、B′.∴當半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三角形的判定與性質、矩形的性質、等邊三角形的性質、勾股定理以及切線的性質,解題的關鍵是:(2)利用相似三角形的性質求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數形結合求出d的取值范圍.21、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結論運用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結論運用]過點E作EQ⊥BC,先根據矩形的性質求出BF,根據翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設DH=x,利用勾股定理求出x得到BH=6,再根據∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結論運用]如圖④過點E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問題情景中的結論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長AD,BC交于點F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問題情景中的結論可得:ED+EC=BH,設DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點,∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長之和(6+2)dm.【點睛】此題是一道綜合題,考查三角形全等的判定及性質,勾股定理,矩形的性質定理,三角形的相似的判定及性質定理,翻折的性質,根據題中小軍和小俊的思路進行證明,故正確理解題意由此進行后面的證明是解題的關鍵.22、11米【解析】
過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,根據相似三角形的性質即可得到結論.【詳解】解:過點C作CE⊥MN于E,過點C′作C′F⊥MN于F,則EF=B′E?AD=1.5?1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴AEMF∴19MF∴MF=192∵NF=B'E=1.5,MN=MF+NF,∴MN=MF+B'E=19答:旗桿MN的高度約為11米.【點睛】本題考查了相似三角形的應用,正確的作出輔助線是解題的關鍵.23、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】
(1)根據四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點D關于直線AE的對稱點為點F,即可證明出∠DBF=90°,故GF⊥GD,再根據∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,FG=DG,FG⊥DG,再分別求出∠GFD與∠DBC的角度,再根據三角函數的性質可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- TD/T 1007-2003耕地后備資源調查與評價技術規程
- JJG(煙草)21-2021煙草實驗室大氣環境
- 2025初三升高一數學暑假銜接講義25講含答案(必修一內容)5.1 任意角和弧度制
- 考研復習-風景園林基礎考研試題【必刷】附答案詳解
- 風景園林基礎考研資料試題及參考答案詳解【完整版】
- 《風景園林招投標與概預算》試題A附參考答案詳解(奪分金卷)
- 2025-2026年高校教師資格證之《高等教育法規》通關題庫含答案詳解(黃金題型)
- 2024年山東華興機械集團有限責任公司人員招聘筆試備考題庫及答案詳解(基礎+提升)
- 2025年河北省定州市輔警招聘考試試題題庫及1套參考答案詳解
- 12月西安商品房市場月度分析
- 項目施工條件分析
- 2022秋期版2208國開電大專科《政治學原理》網上形考(任務1至4)試題及答案
- TSG 81-2022 場(廠)內專用機動車輛安全技術規程
- TLJ300銅扁線連續擠壓生產線使用說明書NEW1復習課程
- 瓷磚店業務員提成方案計劃
- 運營管理案例分析-巴里勒
- 越江盾構施工課件PPT
- 箱梁預應力鋼束張拉計算表
- XX風電場工程風機240小時試運行預驗收實施方案---風電場工程必備
- 密封油系統存在的問題及對策
- 蕪湖“東數西算”數據中心項目投資計劃書(范文)
評論
0/150
提交評論