

下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、四川省綿陽市富驛中學高三數學文模擬試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. ,復數= ( ) A. B. C. D.參考答案:A因為,可知選A2. 已知平面向量,則的值為()A1+B1C2D1參考答案:C【考點】平面向量數量積的運算【分析】求出的坐標,代入模長公式列出方程解出【解答】解: =(2,2),|=2,22+(2)2=4,解得=2故選:C3. 函數f(x)=sin(x+)+cos(x?)的最大值為A B1C D參考答案:A由誘導公式可得: ,則: ,函數的最大值為 .本題選擇A選項.4. 已知數列中,利用如圖
2、所示的程序框圖計算該數列的第10項,則判斷框中應填的語句是( ) 參考答案:D5. 命題“?x1,2,x2a0”為真命題的一個充分不必要條件是( )Aa4Ba4Ca5Da5參考答案:C【考點】命題的真假判斷與應用 【專題】函數的性質及應用【分析】本題先要找出命題為真命題的充要條件a|a4,從集合的角度充分不必要條件應為a|a4的真子集,由選擇項不難得出答案【解答】解:命題“?x1,2,x2a0”為真命題,可化為?x1,2,ax2,恒成立即只需a(x2)max=4,即“?x1,2,x2a0”為真命題的充要條件為a4,而要找的一個充分不必要條件即為集合a|a4的真子集,由選擇項可知C符合題意故選C
3、【點評】本題為找命題一個充分不必要條件,還涉及恒成立問題,屬基礎題6. 在平面四邊形ABCD中,AD=AB=,CD=CB=,且ADAB,現將ABD沿著對角線BD翻折成ABD,則在ABD折起至轉到平面BCD內的過程中,直線AC與平面BCD所成的最大角為()A30B45C60D90參考答案:A【考點】直線與平面所成的角【分析】連結AC,BD,交于點O,由題設條件推導出OA=1,OC=2將ABD沿著對角線BD翻折成ABD,當AC與以O為圓心,OA為半徑的圓相切時,直線AC與平面BCD所成角最大,由此能求出結果【解答】解:如圖,平面四邊形ABCD中,連結AC,BD,交于點O,AD=AB=,CD=CB=
4、,且ADAB,BD=2,ACBD,BO=OD=1,OA=1,OC=2將ABD沿著對角線BD翻折成ABD,當AC與以O為圓心,OA為半徑的圓相切時,直線AC與平面BCD所成角最大,此時,RtOAC中,OA=OA=1,OC=2,OCA=30,AC與平面BCD所成的最大角為30故選:A7. 對函數下列有三個命題圖像關于(,0)對稱在(0,)單調遞增若為偶函數,則的最小值為A. B. C. D. 參考答案:C8. 已知平面向量滿足的夾角為60,若則實數的值為A.1B.C.2D.3參考答案:D略9. 已知ABC的三個內角A,B,C所對的邊為a,b,c,面積為S,且,則A等于A. B. C. D.參考答案
5、:C10. 已知成等比數列,且曲線的頂點是,則等于 HYPERLINK / 3 HYPERLINK / 2 HYPERLINK / 1 HYPERLINK / 參考答案:B二、 填空題:本大題共7小題,每小題4分,共28分11. 某校高一開設3門選修課,有3名同學,每人只選一門,恰有1門課程沒有同學選修,共有 種不同選課方案(用數字作答)參考答案:18【考點】排列、組合的實際應用【專題】應用題;方程思想;演繹法;排列組合【分析】第一步:從3個社團中選2個,第二步:把3名同學分為(2,1)組,把這兩組同學分配到兩個社團中,根據分步計數原理可得【解答】解:第一步:從3個社團中選2個,共有C32=3
6、種,第二步:把3名同學分為(2,1),把這兩組同學分配到兩個社團中有A32=6,根據分步計數原理可得,共有36=18種,故答案為:18【點評】本題考查了分步計數原理,關鍵是分步,以及分組分配,屬于中檔題12. 已知,且是第二象限角,則_.參考答案:【分析】根據誘導公式可以得到的值,結合為第二象限角得到的值,最后利用二倍角的正弦得到要求的正弦值.【詳解】由題設有,因為是第二象限角,所以,故.【點睛】(1)與的三角函數的關系是“函數名不變,符號看象限”;(2)的三個三角函數值只要知道其中一個,就可以求出另外兩個,求值時要關注角的終邊的位置.13. 在ABC中,A=2B,且3sinC=5sinB,則
7、cosB=參考答案:【考點】正弦定理【專題】計算題;轉化思想;分析法;解三角形【分析】由已知及兩角和正弦函數公式,倍角公式可得sinC=2sinBcos2B+(2cos2B1)sinB,結合已知可得6cos2B+3(2cos2B1)=5,即可解得cosB的值【解答】解:A=2B,A+B+C=,可得:C=3B,sinC=sin3B=sin(2B+B)=sin2BcosB+cos2BsinB=2sinBcos2B+(2cos2B1)sinB,3sinC=5sinB,6sinBcos2B+3(2cos2B1)sinB=5sinB,sinB0,解得:6cos2B+3(2cos2B1)=5,解得:cos
8、2B=,A=2B,B為銳角,cosB=故答案為:【點評】本題主要考查了三角函數恒等變換的應用,考查了一元二次方程的解法,考查了計算能力和轉化思想,屬于中檔題14. 已知函數f(x)的導函數為f(x),且滿足f(x)=3x2+2xf(2),則f(4)= 參考答案:0【考點】導數的運算【專題】導數的概念及應用【分析】對已知等式兩邊求導,令x=2求出f(2),得到f(x),代入x=4計算即可【解答】解:由已知f(x)=3x2+2xf(2),兩邊求導得f(x)=6x+2f(2),令x=2,得f(2)=62+2f(2),到f(2)=12,所以f(x)=6x24,所以f(4)=0;故答案為:0【點評】本題
9、考查了導數的運算;關鍵是求出f(2)的值,從而知道導數解析式15. 已知曲線存在垂直于軸的切線,且函數在上單調遞減,則的范圍為 參考答案: ;16. 的三個內角為,若,則的最大值為_參考答案:,17. 設等差數列的前n項和為,若,則 .參考答案:略三、 解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18. 某校為緩解高三學生的高考壓力,經常舉行一些心理素質綜合能力訓練活動,經過一段時間的訓練后從該年級800名學生中隨機抽取100名學生進行測試,并將其成績分為A、B、C、D、E五個等級,統計數據如圖所示(視頻率為概率),根據圖中抽樣調查數據,回答下列問題:(1)試估算該
10、校高三年級學生獲得成績為B的人數;(2)若等級A、B、C、D、E分別對應100分、90分、80分、70分、60分,學校要求當學生獲得的等級成績的平均分大于90分時,高三學生的考前心理穩定,整體過關,請問該校高三年級目前學生的考前心理穩定情況是否整體過關?(3)以每個學生的心理都培養成為健康狀態為目標,學校決定對成績等級為E的16名學生(其中男生4人,女生12人)進行特殊的一對一幫扶培訓,從按分層抽樣抽取的4人中任意抽取2名,求恰好抽到1名男生的概率.參考答案:(1)從條形圖中可知這人中,有名學生成績等級為,故可以估計該校學生獲得成績等級為的概率為,則該校高三年級學生獲得成績為的人數約有.(2)
11、這名學生成績的平均分為(分),因為,所以該校高三年級目前學生的“考前心理穩定整體”已過關.(3)按分層抽樣抽取的人中有名男生,名女生,記男生為,名女生分別為,.從中抽取人的所有情況為,共種情況,其中恰好抽取名男生的有,共種情況,故所求概率.19. (14分)在中,分別為角所對的邊,向量,且垂直.(I)確定角的大小;(II)若的平分線交于點,且,設,試確定關于的函數式,并求邊長的取值范圍.參考答案:(I)由得, (II)由得, ks5u則 由 ,得,略20. 設,且.求證:(1);(2)與不可能同時成立.參考答案:(1)由,得,由基本不等式及,有,即.(2)假設與同時成立,則且,則,即:,由(1
12、)知因此而,因此,因此矛盾,因此假設不成立,原結論成立.21. (本小題滿分14分)設函數.(1)若函數在區間(-2,0)內恰有兩個零點,求a的取值范圍;(2)當a=1時,求函數在區間t,t+3上的最大值.參考答案:(1) (2) 試題分析:試題解析:(1), (1分)令,解得 (2分)當x變化時,的變化情況如下表:00極大值極小值當,即時,因為在區間上單調遞增,在區間-1,1上單調遞減,在區間1,2上單調遞增,且,所以在區間上的最大值為. (10分)由,即時,有t,t+3 ,-1?t,t+3,所以在上的最大值為; (11分)當t+32,即t-1時,22. 已知f(x)=xlnx,g(x)=,
13、直線l:y=(k3)xk+2(1)函數f(x)在x=e處的切線與直線l平行,求實數k的值(2)若至少存在一個x01,e使f(x0)g(x0)成立,求實數a的取值范圍(3)設kZ,當x1時f(x)的圖象恒在直線l的上方,求k的最大值參考答案:【考點】導數在最大值、最小值問題中的應用;利用導數求閉區間上函數的最值;利用導數研究曲線上某點切線方程【分析】(1)先求導,根據導數的幾何意義得到關于k的方程解得即可(2)由于存在x01,e,使f(x0)g(x0),則kx02lnx0?a,只需要k大于h(x)=的最小值即可(3)分離參數,得到k,構造函數,求函數的最小值即可【解答】解:(1)f(x)=1+lnx,f(e)=1+lne=k3k=5,(2)由于存在x01,e,使f(x0)g(x0),則ax02x0lnx0,a設h(x)=則h(x)=,當x1,e時,h(x)0(僅當x=e時取等號)h(x)在1,e上單調遞增,h(x)min=h(1)=0,因此a0(3)由題意xlnx(k3)xk+2在x1時恒成立即k,設F(x)=,F(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司祭掃烈士墓活動方案
- 2025年中學教師資格考試試卷及答案
- 2025年衛生檢驗與檢疫專業知識考試試題及答案
- 2025年項目管理專業資格考試試題及答案
- 2025年認證會計師考試試卷及答案
- 2025年生態系統管理與保護專業考試題及答案
- 2025年人力資源管理與實務課程考試卷及答案
- 2025年社區心理服務與危機干預專業知識測試試題及答案
- 2025年工程管理與項目管理考試試題及答案
- 2025年工業機器人與自動化技術考試題及答案
- 3停止間轉法教案
- 2022-2023學年重慶市合川市三下數學期末學業質量監測模擬試題含解析
- 文創園物業管理方案
- 全過程造價咨詢服務實施方案
- 初二生地會考復習資料全
- 里氏硬度法檢測鋼材強度范圍記錄表、鋼材里氏硬度與抗拉強度范圍換算表
- 《屹立在世界的東方》示范課教學課件【人教部編版小學道德與法治五年級下冊】
- 四川省宜賓市翠屏區中學2022-2023學年數學八年級第二學期期末檢測試題含解析
- 2020-2021成都石室聯合中學蜀華分校小學數學小升初模擬試卷附答案
- 某冶金機械廠供配電系統設計
- 《在中亞細亞草原上》賞析 課件
評論
0/150
提交評論