antifouling coating防污材料 海洋_第1頁
antifouling coating防污材料 海洋_第2頁
antifouling coating防污材料 海洋_第3頁
antifouling coating防污材料 海洋_第4頁
antifouling coating防污材料 海洋_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、海洋防污涂料研究進展12210300012 1海洋防污基本概念海洋附著生物也稱海洋污損生物(marine fouling organism),是生長在船底和海中一切設(shè)施表面的動物、植物和微生物的通稱。這些生物一般是有害的。船底長生物稱為生物污損(biofouling)。防除生物污損稱為防污(antifouling)。海洋中約有40005000種污損生物。在所有污損生物中,有半數(shù)以上浮游在海岸和港灣處,這些生物生長在船底、浮標、輸水管道、冷卻管道、沉船、海底電纜、木筏、浮子、浮橋和網(wǎng)具上,除微生物外:植物性生物約600種,動物性生物約1300種,常見的只有50100種。A.I. Railkin,

2、 Marine Biofouling Colonization Processes and Defenses, CRC Press LLC, 2004.2請看船底hull beneath waterVessels fouled by marine organisms. Images show (a) (b) fouling by the green alga (seaweed) Ulva (image courtesy of Dr J. Lewis) and (c) (d) (e) barnacles (image courtesy of Dr C.D. Anderson).abdce3海洋生

3、物的生長機理L.D. Chambers, F.C. Walsh, R.J.K. Wood, K.R. Stokes, World Maritime Technology Conference, ICMES Proceedings, The Institute of Marine Engineering, Science and Technology, March 2006.Diversity and size scales of a range of representative fouling organisms. (a) Bacteria (scanning electron microg

4、raph (SEM), (b) false-colour SEM of motile, quadriflagellate spores of the green alga (seaweed) Ulva, (c) false-colour environmental SEM image of settled spore of Ulva showingsecreted annulus of swollen adhesive, (d) SEM of diatom (Navicula), (e) larva of tube worm, Hydroides elegans (image courtesy

5、 of B. Nedved), (f) barnacle cypris larva (Amphibalanus amphitrite) exploring a surface by its paired antennules (image courtesy of N. Aldred), (g) adult barnacles (image courtesy of AS Clare), (h) adult tubeworms (H. elegans; image courtesy of M. Hadfield), (i) adult mussels showing byssus threads

6、attached to a surface (image courtesy of J. Wilker), (j) individual plants of the green alga (seaweed) Ulva. The diagram is intended to indicate relative scales rather than absolute sizes; individual species within a group can vary significantly in absolute size.James A. Callow & Maureen E. Callow,

7、NATURE COMMUNICATIONS, Trends in the development of environmentally friendly fouling-resistant marine coatings, March 2011.4污損生物的危害機理Hydrodynamics are negatively affected(Roughness & Wall Shear Stress)-R.L. Townsin, Biofouling 19 (2003) 9 (Supplement).Turbulence profiles of marine vessels is affecte

8、d-M.P. Schultz, G.W. Swain, Biofouling 15 (2000) 129.Sound signature is affected -E. C. Haderlie, in: J. D. Costlow, R. C. Tipper (Eds.), Marine Biodeterioration: An Interdisciplinary Study, Naval Institute Press, MD, USA, London E. and F.N. SPON, 1984.傳統(tǒng)的防污方法L.D. Chambers, F.C. Walsh, R.J.K. Wood,

9、K.R. Stokes, World Maritime Technology Conference, ICMES Proceedings, The Institute of Marine Engineering, Science and Technology, March 2006.重金屬&殺蟲劑三丁基錫低表面能涂料環(huán)境友好型涂料Schematic of (a) soluble matrix biocide releasing coating and (b) insoluble biocide releasing coating. Antifoulant loaded, depleted an

10、tifoulant.5Antifouling systemLeaching rateLifetimeErosion rateCost/US $ m-2Problems(TBT) self-polishingcopolymer paintsChemical reaction through hydrolysis. Reaction zone of ablation 5 m deep.45 years1b3 m month1 40.Polishing leads to smoothing, reducing fuel consumption.$680,8842Banned 20086(Tin-fr

11、ee) self-polishingcopolymersChemical reaction through hydrolysis of copper, zinc, and silyl acrylate.5 yearsPolishing leads to smoothing,Reducing fuel consumption.$1,382,6702Life time shorter thenTBT-based paint systems. Increasing the overall cost of ship maintenance.(Tin-free)conventional paint10

12、g cm2 d141218 monthsN/AN/AHard non-polishing performanceleads to coating build up. Performance only suitable forlow fouling environments2Control depletionpolymers (CDPs) copper paintPhysical dissolution,works by having asoluble matrix.3 yearsMatrix erodes dueto dissolution ofcoating binder.$1,357,78

13、62Biocide release not constant,poor self-smoothing, littleactivity during idle times,higher costs due to necessityof sealer coat on recoats3Foul releaseLow energy surface,some use leachedsilicone oils525 yearsN/AN/AIn-water cleaning difficult asbrushes may damage silicone,foul release coatings are p

14、roneto abrasion damage7Performance comparison for the key antifouling systems used1. A. Terlizzi, S. Fraschetti, P. Gianguzza, M. Faimali, F. Boero, Aquat. Conserv. Mar. Freshw. Ecosyst. 11 (2001) 311.2. J. Lewis, Hull fouling as a vector for the translocation of marine organisms: Report 1 and 2, De

15、pt. of Agriculture, Fisheries and Forestry-Australia,Marine Science and Ecology Pty. Ltd. Commonwealth of Australia, 2002.3. D.M. Yebra, S. Kiil, K. Dam-Johansen, Prog. Org. Coat. 50 (2004) 75.4. G. Swain, Oceans 86 Conference Record, IEEE/MTS,Washington, D.C., 1986, p. 221.5. R.F. Brady Jr., I.L. S

16、inger, Biofouling 15 (2000) 73.6. IMO, International Convention on the Control of Harmful Anti-fouling Systems on Ships AFS/CONF/26, vol. 18, October 2001.7. J.A. Lewis, Proceedings: National Shipping Industry Conference, Sydney, NSW, Australian Maritime Safety Authority, Canberra, March 2001.6New仿生

17、學Biomimetic approachBioinspired topographies to deter fouling. The scanning electron micrographs show the skin denticles of spinner shark in face (a) and end (b) views and (c) image of Sharklet AF topography moulded in PDMSe. Scale bars are (a) 500 m, (b) 250 m and (c) 20 m. Images courtesy of: Prof

18、essor A.B. Brennan.Settlement of spores of Ulva on microengineered Sharklet AF patterns moulded in PDMSe. The graph shows the results of an experiment in which spores of Ulva were allowed to settle (adhere) to a variety of Sharklet-type patterns, with increasing numbers of distinct topographic featu

19、res. The height of the bars indicates the resulting density of spores settled on the different patterns, which are illustrated below each bar (from left to right, n = 0 (smooth), 15, where n = the number of distinct topographic features). In all cases, the height and spacing of the features remained constant (2.8 m high2 m wide2 m space). images of patterns courtesy of Professor A.B. Brennan.Long, C. J. et al. A model that predicts the attachment behavior of Ulva linza zoospores on surface topography. Biofouling 26, 411

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論