




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數,若函數的圖象恒在軸的上方,則實數的取值范圍為( )ABCD2生活中人們常用“通五經貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.為弘揚中國傳統文化,某校在周末學生業
2、余興趣活動中開展了“六藝”知識講座,每藝安排一節,連排六節,則滿足“數”必須排在前兩節,“禮”和“樂”必須分開安排的概率為( )ABCD3在平行四邊形中,若則( )ABCD4若復數(為虛數單位),則的共軛復數的模為( )AB4C2D5已知函數在上有兩個零點,則的取值范圍是( )ABCD6已知某超市2018年12個月的收入與支出數據的折線圖如圖所示:根據該折線圖可知,下列說法錯誤的是( )A該超市2018年的12個月中的7月份的收益最高B該超市2018年的12個月中的4月份的收益最低C該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D該超市2018年7-12月份的總收益比20
3、18年1-6月份的總收益增長了90萬元7設為自然對數的底數,函數,若,則( )ABCD8函數的圖象大致為( )ABCD9設正項等差數列的前項和為,且滿足,則的最小值為A8B16C24D3610設,則ABCD11若函數(其中,圖象的一個對稱中心為,其相鄰一條對稱軸方程為,該對稱軸處所對應的函數值為,為了得到的圖象,則只要將的圖象( )A向右平移個單位長度B向左平移個單位長度C向左平移個單位長度D向右平移個單位長度12已知函數,以下結論正確的個數為( )當時,函數的圖象的對稱中心為;當時,函數在上為單調遞減函數;若函數在上不單調,則;當時,在上的最大值為1A1B2C3D4二、填空題:本題共4小題,
4、每小題5分,共20分。13成都市某次高三統考,成績X經統計分析,近似服從正態分布,且,若該市有人參考,則估計成都市該次統考中成績大于分的人數為_14,則f(f(2)的值為_15如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為_.16若滿足,則目標函數的最大值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.18(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原
5、點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.19(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學校放寒假,寒假結束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉播的時間作了一次調查,得到如圖頻數分布直方圖:(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據頻率分布直方圖補全列聯表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關;(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名
6、作冰雪運動知識講座.記其中女職工的人數為,求的分布列與數學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,20(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.21(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(ab0)的離心率為且經過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方)(1)求橢圓C的標準方程
7、;(2)若AEF與BDF的面積之比為1:7,求直線l的方程22(10分)在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數方程為 (為參數),直線與曲線分別交于兩點(1)寫出曲線的直角坐標方程和直線的普通方程;(2)若點的極坐標為,求的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】函數的圖象恒在軸的上方,在上恒成立.即,即函數的圖象在直線上方,先求出兩者相切時的值,然后根據變化時,函數的變化趨勢,從而得的范圍【詳解】由題在上恒成立.即,的圖象永遠在的上方,設與的切點,則,解得
8、,易知越小,圖象越靠上,所以.故選:B【點睛】本題考查函數圖象與不等式恒成立的關系,考查轉化與化歸思想,首先函數圖象轉化為不等式恒成立,然后不等式恒成立再轉化為函數圖象,最后由極限位置直線與函數圖象相切得出參數的值,然后得出參數范圍2C【解析】分情況討論,由間接法得到“數”必須排在前兩節,“禮”和“樂”必須分開的事件個數,不考慮限制因素,總數有種,進而得到結果.【詳解】當“數”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有 當“數”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況
9、,不考慮限制因素,總數有種,故滿足條件的事件的概率為: 故答案為:C.【點睛】解排列組合問題要遵循兩個原則:按元素(或位置)的性質進行分類;按事情發生的過程進行分步具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置)3C【解析】由,,利用平面向量的數量積運算,先求得利用平行四邊形的性質可得結果.【詳解】如圖所示,平行四邊形中, ,,,因為,所以,,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數量積的運算法則,屬于中檔題. 向量的運算有兩種方法:()平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);()三角形法則(兩箭頭間
10、向量是差,箭頭與箭尾間向量是和).4D【解析】由復數的綜合運算求出,再寫出其共軛復數,然后由模的定義計算模【詳解】,故選:D【點睛】本題考查復數的運算,考查共軛復數與模的定義,屬于基礎題5C【解析】對函數求導,對a分類討論,分別求得函數的單調性及極值,結合端點處的函數值進行判斷求解.【詳解】 ,.當時,在上單調遞增,不合題意.當時,在上單調遞減,也不合題意.當時,則時,在上單調遞減,時,在上單調遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導數解決函數零點的問題,考查了函數的單調性及極值問題,屬于中檔題6D【解析】用收入減去支出,求得每月收益,
11、然后對選項逐一分析,由此判斷出說法錯誤的選項.【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項說法正確;月收益最低,B選項說法正確;月總收益萬元,月總收益萬元,所以前個月收益低于后六個月收益,C選項說法正確,后個月收益比前個月收益增長萬元,所以D選項說法錯誤.故選D.【點睛】本小題主要考查圖表分析,考查收益的計算方法,屬于基礎題.7D【解析】利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數值的計算,屬于基礎題.8A【解析】根據函數的奇偶性和單調性,
12、排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數,排除C和D.當時,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數圖像的識別,考查利用導數研究函數的單調區間和極值,屬于中檔題.9B【解析】方法一:由題意得,根據等差數列的性質,得成等差數列,設,則,則,當且僅當時等號成立,從而的最小值為16,故選B方法二:設正項等差數列的公差為d,由等差數列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B10C【解析】分析:利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡復數,然后求解復數的模.詳解
13、:,則,故選c.點睛:復數是高考中的必考知識,主要考查復數的概念及復數的運算要注意對實部、虛部的理解,掌握純虛數、共軛復數這些重要概念,復數的運算主要考查除法運算,通過分母實數化轉化為復數的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.11B【解析】由函數的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,可得的解析式,再根據函數的圖象變換規律,誘導公式,得出結論【詳解】根據已知函數其中,的圖象過點,可得,解得:再根據五點法作圖可得,可得:,可得函數解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B【點睛】本題主要考查由函數的部分圖象求解析式,由函
14、數的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,函數的圖象變換規律,誘導公式的應用,屬于中檔題12C【解析】逐一分析選項,根據函數的對稱中心判斷;利用導數判斷函數的單調性;先求函數的導數,若滿足條件,則極值點必在區間;利用導數求函數在給定區間的最值.【詳解】為奇函數,其圖象的對稱中心為原點,根據平移知識,函數的圖象的對稱中心為,正確由題意知因為當時,又,所以在上恒成立,所以函數在上為單調遞減函數,正確由題意知,當時,此時在上為增函數,不合題意,故令,解得因為在上不單調,所以在上有解,需,解得,正確令,得根據函數的單調性,在上的最大值只可能為或因為,所以最大值為64,結論錯誤故選:C
15、【點睛】本題考查利用導數研究函數的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】根據正態分布密度曲線性質,結合求得,即可得解.【詳解】根據正態分布,且,所以故該市有人參考,則估計成都市該次統考中成績大于分的人數為故答案為:【點睛】此題考查正態分布密度曲線性質的理解辨析,根據曲線的對稱性求解概率,根據總人數求解成績大于114的人數.141【解析】先求f(1),再根據f(1)值所在區間求f(f(1).【詳解】由題意,f(1)=log3(111)=1,故f(f(1)=f(1)=1e11=1,故答案為:1【點睛】本題考查分段函數
16、求值,考查對應性以及基本求解能力.15【解析】由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,解得,所以,由,得,解得.故答案為:【點睛】本題考查圓錐的體積、球的體積的計算,考查學生空間想象能力與計算能力,是一道中檔題.16-1【解析】由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,把最優解的坐標代入目標函數得答案【詳解】由約束條件作出可行域如圖, 化目標函數為,由圖可得,當直線過點時,直線在軸上的截距最大,由得即,則有最大值,故答案為【點睛】本題主
17、要考查線性規劃中利用可行域求目標函數的最值,屬簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2).【解析】(1)建立空間坐標系,通過求向量與向量的夾角,轉化為異面直線與直線所成的角的大小;(2)先求出面的一個法向量,再用點到面的距離公式算出即可【詳解】以為原點,所在直線分別為軸建系,設所以, ,所以異面直線與直線所成的
18、角的余弦值為 ,異面直線與直線所成的角的大小為(2)因為, ,設是面的一個法向量,所以有 即 ,令 , ,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學生的數學建模以及數學運算能力18(1);(2)見解析【解析】(1)聯立直線和拋物線,消去可得,求出,再代入弦長公式計算即可.(2)由(1)可得,設,計算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計算直線的斜率,求出直線的方程,化簡可得到恒過的定點.【詳解】(1)由,消去可得,設,則,.,解得或(舍去),.(2)證明:由(1)可得,設,所以直線的方程為,當時,則,代入拋
19、物線方程,可得,所以直線的斜率,直線的方程為,整理可得,故直線過定點.【點睛】本題第一問考查直線與拋物線相交的弦長問題,需熟記弦長公式.第二問考查直線方程和直線恒過定點問題,需有較強的計算能力,屬于難題.19(1)列聯表見解析,有把握;(2)分布列見解析,.【解析】(1)根據頻率分布直方圖補全列聯表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座記其中女職工的人數為,則的可能取值為0,1,2,分別求出相應的概率,由此能求出的分布列和數學期望【詳解】解:
20、(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關.(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,所以的分布列為012【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的分布列、數學期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質等基礎知識,考查運算求解能力,屬于中檔題20(1)見解析(2)【解析】(1)利用面面垂直的性質定理證得平面,由此證得,根據圓的幾何性質證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 茶葉訂單合同協議書
- 高三寒假奮戰協議書
- 門面解約合同協議書
- 腦部醫學成像技術
- 飯店風險責任協議書
- 長期采購委托協議書
- 魚池轉讓合同協議書
- 伯利收購切爾西協議書
- 食堂簽訂安全協議書
- 音樂培訓合作協議書
- 遠程培訓學習總結(4篇)
- 全息照相與信息光學實驗報告
- 2022年02月上海鐵路局下屬鐵路疾病預防控制所公開招聘畢業生筆試參考題庫含答案解析
- 激光設備買賣合同模板(2篇)
- GB/T 24815-2009起重用短環鏈吊鏈等用6級普通精度鏈
- 線描畫基本功教學課件
- 船上投訴程序(中英文)
- DB37-T 3781-2019 政務服務中心能源消耗定額標準-(高清版)
- 重癥胰腺炎(1)課件
- 科學素養全稿ppt課件(完整版)
- 克拉潑改進型電容三點式振蕩器
評論
0/150
提交評論