




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1 答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1過拋物線的焦點(diǎn)作直線與拋物線在第一象限交于點(diǎn)A,與準(zhǔn)線在第三象限交于點(diǎn)B,過點(diǎn)作準(zhǔn)線的垂線,垂
2、足為.若,則( )ABCD2下列說法正確的是( )A“若,則”的否命題是“若,則”B在中,“”是“”成立的必要不充分條件C“若,則”是真命題D存在,使得成立3定義在上的偶函數(shù),對,且,有成立,已知,則,的大小關(guān)系為( )ABCD4我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是( )A40
3、0米B480米C520米D600米5下列函數(shù)中,在定義域上單調(diào)遞增,且值域?yàn)榈氖牵?)ABCD6設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為( )ABCD7已知函數(shù),為圖象的對稱中心,若圖象上相鄰兩個(gè)極值點(diǎn),滿足,則下列區(qū)間中存在極值點(diǎn)的是( )ABCD8已知,若,則正數(shù)可以為( )A4B23C8D179記等差數(shù)列的公差為,前項(xiàng)和為.若,則( )ABCD10()ABCD11如圖,正方形網(wǎng)格紙中的實(shí)線圖形是一個(gè)多面體的三視圖,則該多面體各表面所在平面互相垂直的有( )A2對B3對C4對D5對12已知雙曲線的左、右焦點(diǎn)分別為,點(diǎn)P是C的右
4、支上一點(diǎn),連接與y軸交于點(diǎn)M,若(O為坐標(biāo)原點(diǎn)),則雙曲線C的漸近線方程為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知雙曲線的一條漸近線為,則焦點(diǎn)到這條漸近線的距離為_14已知雙曲線的兩條漸近線方程為,若頂點(diǎn)到漸近線的距離為1,則雙曲線方程為 15在平面直角坐標(biāo)系中,若函數(shù)在處的切線與圓存在公共點(diǎn),則實(shí)數(shù)的取值范圍為_16已知數(shù)列滿足:,若對任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)選修4-5:不等式選講已知函數(shù).(1)設(shè),求不等式的解集;(2)已知,且的最小值等于,求實(shí)數(shù)的值.18(12分)在平
5、面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:.過點(diǎn)的直線:(為參數(shù))與曲線相交于,兩點(diǎn).(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)若,求實(shí)數(shù)的值.19(12分)如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,/,.(1)證明:/平面BCE. (2)設(shè)平面ABF與平面CDF所成的二面角為,求.20(12分)等差數(shù)列中,分別是下表第一、二、三行中的某一個(gè)數(shù),且其中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個(gè)可能的組合,并求數(shù)列的通項(xiàng)公式;(2)記(1)中您選擇的的前項(xiàng)和為
6、,判斷是否存在正整數(shù),使得,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.21(12分)已知函數(shù)的定義域?yàn)椋覞M足,當(dāng)時(shí),有,且.(1)求不等式的解集;(2)對任意,恒成立,求實(shí)數(shù)的取值范圍.22(10分)已知拋物線的焦點(diǎn)為,點(diǎn),點(diǎn)為拋物線上的動點(diǎn) (1)若的最小值為,求實(shí)數(shù)的值; (2)設(shè)線段的中點(diǎn)為,其中為坐標(biāo)原點(diǎn),若,求的面積參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,結(jié)合比值與正切二倍角公式化
7、簡即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作.由拋物線定義知,所以,所以.故選:C【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題2C【解析】A:否命題既否條件又否結(jié)論,故A錯(cuò).B:由正弦定理和邊角關(guān)系可判斷B錯(cuò).C:可判斷其逆否命題的真假,C正確.D:根據(jù)冪函數(shù)的性質(zhì)判斷D錯(cuò).【詳解】解:A:“若,則”的否命題是“若,則”,故 A錯(cuò).B:在中,故“”是“”成立的必要充分條件,故B錯(cuò).C:“若,則”“若,則”,故C正確.D:由冪函數(shù)在遞減,故D錯(cuò).故選:C【點(diǎn)睛】考查判斷命題的真假,是基礎(chǔ)題.3A【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:
8、對,且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)椋怨蔬x:A【點(diǎn)睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.4B【解析】根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺和第二展望臺的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對中國文化的理解與簡單應(yīng)用,屬于基礎(chǔ)題.5B【解析】分別作出各個(gè)選項(xiàng)中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯(cuò)誤;對于,的圖象如下圖所示:則在定
9、義域上單調(diào)遞增,且值域?yàn)椋_;對于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域?yàn)椋e(cuò)誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎(chǔ)題.6D【解析】先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)椋裕詾槠婧瘮?shù),當(dāng)時(shí),所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖冢裕裕喌茫裕戳睿驗(yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,又因?yàn)椋砸乖跁r(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主
10、要考查函數(shù)與方程的綜合問題,難度較大.7A【解析】結(jié)合已知可知,可求,進(jìn)而可求,代入,結(jié)合,可求,即可判斷【詳解】圖象上相鄰兩個(gè)極值點(diǎn),滿足,即,且,當(dāng)時(shí),為函數(shù)的一個(gè)極小值點(diǎn),而故選:【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡單應(yīng)用,解題的關(guān)鍵是性質(zhì)的靈活應(yīng)用8C【解析】首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗(yàn)證即可;【詳解】解:,當(dāng)時(shí),滿足,實(shí)數(shù)可以為8.故選:C【點(diǎn)睛】本題考查對數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.9C【解析】由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)椋越獾茫裕裕蔬x:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于
11、中檔題.10B【解析】利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案【詳解】故選B【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題11C【解析】畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案【詳解】該幾何體是一個(gè)四棱錐,直觀圖如下圖所示,易知平面平面,作POAD于O,則有PO平面ABCD,POCD,又ADCD,所以,CD平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:POAOOD,所以,APPD,又APCD,所以,AP平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對【點(diǎn)睛】本題考查了空間幾何體的三視圖,考查了四棱錐
12、的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題12C【解析】利用三角形與相似得,結(jié)合雙曲線的定義求得的關(guān)系,從而求得雙曲線的漸近線方程。【詳解】設(shè),由,與相似,所以,即,又因?yàn)椋裕裕矗噪p曲線C的漸近線方程為.故選:C.【點(diǎn)睛】本題考查雙曲線幾何性質(zhì)、漸近線方程求解,考查數(shù)形結(jié)合思想,考查邏輯推理能力和運(yùn)算求解能力。二、填空題:本題共4小題,每小題5分,共20分。132.【解析】由雙曲線的一條漸近線為,解得求出雙曲線的右焦點(diǎn),利用點(diǎn)到直線的距離公式求解即可【詳解】雙曲線的一條漸近線為 解得: 雙曲線的右焦點(diǎn)為焦點(diǎn)到這條漸近線的距離為:本題正確結(jié)果:【點(diǎn)睛】本題考查了雙曲線和的標(biāo)準(zhǔn)方程
13、及其性質(zhì),涉及到點(diǎn)到直線距離公式的考查,屬于基礎(chǔ)題14【解析】由已知,即,取雙曲線頂點(diǎn)及漸近線,則頂點(diǎn)到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.15【解析】利用導(dǎo)數(shù)的幾何意義可求得函數(shù)在處的切線,再根據(jù)切線與圓存在公共點(diǎn),利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到 又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義求解切線方程的問題,同時(shí)也考查了根據(jù)直線與圓的位置關(guān)系求解參數(shù)范圍的問題,屬于基礎(chǔ)題.162【解析】根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式
14、的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因?yàn)?累加可得.若,注意到當(dāng)時(shí),不滿足對任意的正整數(shù)均有.所以.當(dāng)時(shí),證明:對任意的正整數(shù)都有.當(dāng)時(shí), 成立.假設(shè)當(dāng)時(shí)結(jié)論成立,即,則,即結(jié)論對也成立.由數(shù)學(xué)歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時(shí)注意結(jié)合參數(shù)的范圍問題進(jìn)行分析.屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17 (1) (2) 【解析】(1)把f(x)去絕對值寫成分段函數(shù)的形式,分類討論,分別求得解集,綜合可得結(jié)論(2)把
15、f(x)去絕對值寫成分段函數(shù),畫出f(x)的圖像,找出利用條件求得a的值【詳解】(1)時(shí),.當(dāng)時(shí),即為,解得.當(dāng)時(shí), ,解得.當(dāng)時(shí), ,解得.綜上,的解集為.(2).,由的圖象知,.【點(diǎn)睛】本題主要考查含絕對值不等式的解法及含絕對值的函數(shù)的最值問題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題18(1),;(2).【解析】(1)將代入求解,由(為參數(shù))消去即可.(2)將(為參數(shù))與聯(lián)立得,設(shè),兩點(diǎn)對應(yīng)的參數(shù)為,則,再根據(jù),即,利用韋達(dá)定理求解.【詳解】(1)把代入,得,由(為參數(shù)),消去得,曲線的直角坐標(biāo)方程和直線的普通方程分別是,.(2)將(為參數(shù))代入得,設(shè),兩點(diǎn)對應(yīng)的參數(shù)為,則,由得,所以,即,
16、所以,而,解得.【點(diǎn)睛】本題主要考查參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程的轉(zhuǎn)化和直線參數(shù)方程的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.19(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的性質(zhì)定理,可得DE/BF,然后根據(jù)勾股定理計(jì)算可得BFDE,最后利用線面平行的判定定理,可得結(jié)果.(2)利用建系的方法,可得平面ABF的一個(gè)法向量為,平面CDF的法向量為,然后利用向量的夾角公式以及平方關(guān)系,可得結(jié)果.【詳解】(1)因?yàn)镈E平面ABCD,所以DEAD,因?yàn)锳D4,AE5,DE3,同理BF3,又DE平面ABCD,BF平面ABCD,所以DE/BF,又BFDE,所以平行四邊形BEDF,故DF/BE,
17、因?yàn)锽E平面BCE,DF平面BCE所以DF/平面BCE;(2)建立如圖空間直角坐標(biāo)系,則D(0,0,0),A(4,0,0),C(0,4,0),F(xiàn)(4,3,3), 設(shè)平面CDF的法向量為,由,令x3,得,易知平面ABF的一個(gè)法向量為,所以,故.【點(diǎn)睛】本題考查線面平行的判定以及利用建系方法解決面面角問題,屬基礎(chǔ)題.20(1)見解析,或;(2)存在,.【解析】(1)滿足題意有兩種組合:,分別計(jì)算即可;(2)由(1)分別討論兩種情況,假設(shè)存在正整數(shù),使得,成等比數(shù)列,即,解方程是否存在正整數(shù)解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:,此時(shí)等差數(shù)列,所以其通項(xiàng)公式為.,此時(shí)等差數(shù)列,所以其
18、通項(xiàng)公式為.(2)若選擇,.則.若,成等比數(shù)列,則,即,整理,得,即,此方程無正整數(shù)解,故不存在正整數(shù),使,成等比數(shù)列.若選則,則,若,成等比數(shù)列,則,即,整理得,因?yàn)闉檎麛?shù),所以.故存在正整數(shù),使,成等比數(shù)列.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和,涉及到等比數(shù)列的性質(zhì),是一道中檔題.21(1);(2).【解析】(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運(yùn)用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè),所以函數(shù)在上單調(diào)遞增,又因?yàn)楹停瑒t,所以得解得,即, 故的取值范圍為;(2) 由于恒成立,恒成立,設(shè), 則, 令, 則,所以在區(qū)間上單調(diào)遞增, 所以,根據(jù)條件,只要 ,所以.【點(diǎn)睛】本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問題,還運(yùn)用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.22(1)的值為或.(2)【解析】(1)分類討
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年商丘師范學(xué)院輔導(dǎo)員考試真題
- 風(fēng)險(xiǎn)管理在公司戰(zhàn)略目標(biāo)實(shí)現(xiàn)中的整合研究試題及答案
- 倉庫與電商平臺的協(xié)同整合計(jì)劃
- 2024年河北省廣播電視局下屬事業(yè)單位真題
- 2025屆山東省臨沂市沂縣七年級數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析
- 2024年嘉興海鹽國企緊缺型專業(yè)招聘筆試真題
- 成功的法學(xué)備考策略試題及答案
- 有效的沖突管理技巧計(jì)劃
- 法治與可持續(xù)發(fā)展的互動研究試題及答案
- 優(yōu)化前臺接待流程的實(shí)踐指南計(jì)劃
- 修理廠員工安全合同協(xié)議書
- 術(shù)后吻合口瘺
- 陜西延安通和電業(yè)有限責(zé)任公司招聘筆試真題2021
- HYT 075-2005 海洋信息分類與代碼(正式版)
- 建筑用砂石料采購 投標(biāo)方案(技術(shù)方案)
- 融于教學(xué)的形成性評價(jià)讀書分享
- 廣東省廣州市八區(qū)聯(lián)考2024年高一數(shù)學(xué)第二學(xué)期期末考試模擬試題含解析
- 體質(zhì)外貌鑒定
- 起重機(jī)維護(hù)保養(yǎng)記錄表
- 《煤礦重大危險(xiǎn)源評估報(bào)告》
- 大鎖孫天宇小品《時(shí)間都去哪了》臺詞劇本完整版-一年一度喜劇大賽
評論
0/150
提交評論