江蘇銅山2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析及點睛_第1頁
江蘇銅山2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析及點睛_第2頁
江蘇銅山2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析及點睛_第3頁
江蘇銅山2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析及點睛_第4頁
江蘇銅山2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析及點睛_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022中考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1如圖,在RtABC中,AB=9,BC=6,B=90,將ABC折疊,使A點與BC的中點D重合,折痕為MN,則線段BN的長為( )A52B53C4D52下列運算正確的是()A =2B4=1C=9D=23圓錐的底面直徑是80cm,母線長90cm

2、,則它的側(cè)面積是ABCD4如圖,已知反比函數(shù)的圖象過RtABO斜邊OB的中點D,與直角邊AB相交于C,連結(jié)AD、OC,若ABO的周長為,AD=2,則ACO的面積為( )AB1C2D45將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是()ABCD6計算的結(jié)果為()ABCD7在0,2,3,四個數(shù)中,最小的數(shù)是()A0B2C3D8將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30角的直角三角板的斜邊與紙條一邊重合,含45角的三角板的一個頂點在紙條的另一邊上,則1的度數(shù)是()A15B22.5C30D459拋物線y3(x2)2+5的頂點坐標(biāo)是()A(2,5) B(2,5) C

3、(2,5) D(2,5)10如圖,將ABC繞點B順時針旋轉(zhuǎn)60得DBE,點C的對應(yīng)點E給好落在AB的延長線上,連接AD,下列結(jié)論不一定正確的是()AADBCBDAC=ECBCDEDAD+BC=AE二、填空題(本大題共6個小題,每小題3分,共18分)11計算的結(jié)果為_12如果某數(shù)的一個平方根是5,那么這個數(shù)是_13如圖是由大小完全相同的正六邊形組成的圖形,小軍準(zhǔn)備用紅色、黃色、藍色隨機給每個正六邊形分別涂上其中的一種顏色,則上方的正六邊形涂紅色的概率是_.14圓錐的底面半徑為2,母線長為6,則它的側(cè)面積為_15如圖,在等腰中,點在以斜邊為直徑的半圓上,為的中點當(dāng)點沿半圓從點運動至點時,點運動的路

4、徑長是_16如圖,如果兩個相似多邊形任意一組對應(yīng)頂點P、P所在的直線都是經(jīng)過同一點O,且有OP=kOP(k0),那么我們把這樣的兩個多邊形叫位似多邊形,點O叫做位似中心,已知ABC與ABC是關(guān)于點O的位似三角形,OA=3OA,則ABC與ABC的周長之比是_.三、解答題(共8題,共72分)17(8分)如圖,在ABC中,ABC=90,BD為AC邊上的中線(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標(biāo)注相應(yīng)的字母:過點C作直線CE,使CEBC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形18(8分)如圖,已知三角形ABC的邊AB是0的切線,切點為BAC經(jīng)過圓心0并與圓相交于點D

5、,C,過C作直線CE丄AB,交AB的延長線于點E,(1)求證:CB平分ACE;(2)若BE=3,CE=4,求O的半徑.19(8分)對于平面直角坐標(biāo)系xOy中的點P和直線m,給出如下定義:若存在一點P,使得點P到直線m的距離等于1,則稱P為直線m的平行點(1)當(dāng)直線m的表達式為yx時,在點,中,直線m的平行點是_;O的半徑為,點Q在O上,若點Q為直線m的平行點,求點Q的坐標(biāo)(2)點A的坐標(biāo)為(n,0),A半徑等于1,若A上存在直線的平行點,直接寫出n的取值范圍20(8分)如圖,在RtABC中,C90,以BC為直徑的O交AB于點D,DE交AC于點E,且AADE求證:DE是O的切線;若AD16,DE

6、10,求BC的長21(8分)已知ABC在平面直角坐標(biāo)系中的位置如圖所示.分別寫出圖中點A和點C的坐標(biāo);畫出ABC繞點C按順時針方向旋轉(zhuǎn)90后的ABC;求點A旋轉(zhuǎn)到點A所經(jīng)過的路線長(結(jié)果保留).22(10分)如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點E(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點F,設(shè)點D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標(biāo);如果不存在,請說明理由(3)連接BE,是否存在點

7、D,使得和相似?若存在,求出點D的坐標(biāo);若不存在,說明理由23(12分)如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,F(xiàn)30.(1)求證:BECE(2)將EFG繞點E按順時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時停止轉(zhuǎn)動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)求證:BEMCEN;若AB2,求BMN面積的最大值;當(dāng)旋轉(zhuǎn)停止時,點B恰好在FG上(如圖3),求sinEBG的值.24如圖,ABC是等腰三角形,ABAC,點D是AB上一點,過點D作DEBC交BC于點E,交CA延長線于點F證明:ADF是等腰三角形;若B60,BD4,AD2

8、,求EC的長,參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】設(shè)BN=x,則由折疊的性質(zhì)可得DN=AN=9-x,根據(jù)中點的定義可得BD=3,在RtBND中,根據(jù)勾股定理可得關(guān)于x的方程,解方程即可求解【詳解】設(shè)BN=x,則AN=9-x.由折疊的性質(zhì),得DN=AN=9-x.因為點D是BC的中點,所以BD=3.在RtNBD中,由勾股定理,得BN2+BD2=DN2,即x2+32=9-x2,解得x=4,故線段BN的長為4.故選C.【點睛】此題考查了折疊的性質(zhì),勾股定理,中點的定義以及方程思想,熟練掌握折疊的性質(zhì)及勾股定理是解答本題的關(guān)鍵2、A【解析】根據(jù)二次根式的性質(zhì)對A進行判斷;

9、根據(jù)二次根式的加減法對B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)二次根式的乘法法則對D進行判斷【詳解】A、原式=2,所以A選項正確;B、原式=4-3=,所以B選項錯誤;C、原式=3,所以C選項錯誤;D、原式=,所以D選項錯誤故選A【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍3、D【解析】圓錐的側(cè)面積=8090=3600(cm2) .故選D4、A【解析】在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長,根據(jù)周長

10、求出直角邊之和,設(shè)其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長,過D作DE垂直于x軸,得到E為OA中點,求出OE的長,在直角三角形DOE中,利用勾股定理求出DE的長,利用反比例函數(shù)k的幾何意義求出k的值,確定出三角形AOC面積即可【詳解】在RtAOB中,AD=2,AD為斜邊OB的中線,OB=2AD=4,由周長為4+2,得到AB+AO=2,設(shè)AB=x,則AO=2-x,根據(jù)勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,AB=+,OA=-,過D作DEx軸,交x軸于點E,可得E為AO中點,OE=OA=(-)(假設(shè)

11、OA=+,與OA=-,求出結(jié)果相同),在RtDEO中,利用勾股定理得:DE=(+)),k=-DEOE=-(+))(-))=1.SAOC=DEOE=,故選A【點睛】本題屬于反比例函數(shù)綜合題,涉及的知識有:勾股定理,直角三角形斜邊的中線性質(zhì),三角形面積求法,以及反比例函數(shù)k的幾何意義,熟練掌握反比例的圖象與性質(zhì)是解本題關(guān)鍵5、A【解析】試題解析:一根圓柱形的空心鋼管任意放置,不管鋼管怎么放置,它的三視圖始終是,主視圖是它們中一個,主視圖不可能是故選A.6、A【解析】根據(jù)分式的運算法則即可【詳解】解:原式=,故選A.【點睛】本題主要考查分式的運算。7、B【解析】根據(jù)實數(shù)比較大小的法則進行比較即可【詳

12、解】在這四個數(shù)中30,0,-20,-2最小故選B【點睛】本題考查的是實數(shù)的大小比較,即正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小8、A【解析】試題分析:如圖,過A點作ABa,1=2,ab,ABb,3=4=30,而2+3=45,2=15,1=15故選A考點:平行線的性質(zhì)9、C【解析】根據(jù)二次函數(shù)的性質(zhì)ya(xh)2+k的頂點坐標(biāo)是(h,k)進行求解即可.【詳解】拋物線解析式為y=3(x-2)2+5,二次函數(shù)圖象的頂點坐標(biāo)是(2,5),故選C【點睛】本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(biāo)(對稱軸),最大(最小)值,增減性

13、等10、C【解析】利用旋轉(zhuǎn)的性質(zhì)得BA=BD,BC=BE,ABD=CBE=60,C=E,再通過判斷ABD為等邊三角形得到AD=AB,BAD=60,則根據(jù)平行線的性質(zhì)可判斷ADBC,從而得到DAC=C,于是可判斷DAC=E,接著利用AD=AB,BE=BC可判斷AD+BC=AE,利用CBE=60,由于E的度數(shù)不確定,所以不能判定BCDE【詳解】ABC繞點B順時針旋轉(zhuǎn)60得DBE,點C的對應(yīng)點E恰好落在AB的延長線上,BA=BD,BC=BE,ABD=CBE=60,C=E,ABD為等邊三角形,AD=AB,BAD=60,BAD=EBC,ADBC,DAC=C,DAC=E,AE=AB+BE,而AD=AB,B

14、E=BC,AD+BC=AE,CBE=60,只有當(dāng)E=30時,BCDE故選C【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等也考查了等邊三角形的性質(zhì)二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】根據(jù)分式的運算法則即可得解.【詳解】原式,故答案為:【點睛】本題主要考查了同分母的分式減法,熟練掌握相關(guān)計算法則是解決本題的關(guān)鍵.12、25【解析】利用平方根定義即可求出這個數(shù).【詳解】設(shè)這個數(shù)是x(x0),所以x(-5)225.【點睛】本題解題的關(guān)鍵是掌握平方根的定義.13、【解析】試題分析:上方的正六邊形涂紅

15、色的概率是,故答案為考點:概率公式14、12【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積解:根據(jù)圓錐的側(cè)面積公式:rl=26=12,故答案為12考點:圓錐的計算15、【解析】取的中點,取的中點,連接,則,故的軌跡為以為圓心,為半徑的半圓弧,根據(jù)弧長公式即可得軌跡長.【詳解】解:如圖,取的中點,取的中點,連接,在等腰中,點在以斜邊為直徑的半圓上,為的中位線,當(dāng)點沿半圓從點運動至點時,點的軌跡為以為圓心,為半徑的半圓弧,弧長,故答案為:.【點睛】本題考查了點的軌跡與等腰三角形的性質(zhì).解決動點問題的關(guān)鍵是在運動中,把握不變的等量關(guān)系(或函數(shù)關(guān)系),通過

16、固定的等量關(guān)系(或函數(shù)關(guān)系),解決動點的軌跡或坐標(biāo)問題.16、1:1【解析】分析:根據(jù)相似三角形的周長比等于相似比解答詳解:ABC與ABC是關(guān)于點O的位似三角形,ABCABCOA=1OA,ABC與ABC的周長之比是:OA:OA=1:1故答案為1:1點睛:本題考查的是位似變換的性質(zhì),位似變換的性質(zhì):兩個圖形必須是相似形;對應(yīng)點的連線都經(jīng)過同一點;對應(yīng)邊平行三、解答題(共8題,共72分)17、 (1)見解析;(2)見解析.【解析】(1)根據(jù)題意作圖即可;(2)先根據(jù)BD為AC邊上的中線,AD=DC,再證明ABDCED(AAS)得AB=EC,已知ABC=90即可得四邊形ABCE是矩形【詳解】(1)解

17、:如圖所示:E點即為所求;(2)證明:CEBC,BCE=90,ABC=90,BCE+ABC=180,ABCE,ABE=CEB,BAC=ECA,BD為AC邊上的中線,AD=DC,在ABD和CED中,ABDCED(AAS),AB=EC,四邊形ABCE是平行四邊形,ABC=90,平行四邊形ABCE是矩形【點睛】本題考查了全等三角形的判定與性質(zhì)與矩形的性質(zhì),解題的關(guān)鍵是熟練的掌握全等三角形的判定與性質(zhì)與矩形的性質(zhì).18、(1)證明見解析;(2). 【解析】試題分析:(1)證明:如圖1,連接OB,由AB是0的切線,得到OBAB,由于CE丄AB,的OBCE,于是得到1=3,根據(jù)等腰三角形的性質(zhì)得到1=2,

18、通過等量代換得到結(jié)果(2)如圖2,連接BD通過DBCCBE,得到比例式,列方程可得結(jié)果(1)證明:如圖1,連接OB,AB是0的切線,OBAB,CE丄AB,OBCE,1=3,OB=OC,1=2,2=3,CB平分ACE;(2)如圖2,連接BD,CE丄AB,E=90,BC=5,CD是O的直徑,DBC=90,E=DBC,DBCCBE,BC2=CDCE,CD=,OC=,O的半徑=考點:切線的性質(zhì)19、(1),;,;(2)【解析】(1)根據(jù)平行點的定義即可判斷;分兩種情形:如圖1,當(dāng)點B在原點上方時,作OHAB于點H,可知OH=1.如圖2,當(dāng)點B在原點下方時,同法可求;(2)如圖,直線OE的解析式為,設(shè)直

19、線BC/OE交x軸于C,作CDOE于D. 設(shè)A與直線BC相切于點F,想辦法求出點A的坐標(biāo),再根據(jù)對稱性求出左側(cè)點A的坐標(biāo)即可解決問題;【詳解】解:(1)因為P2、P3到直線yx的距離為1,所以根據(jù)平行點的定義可知,直線m的平行點是,故答案為,解:由題意可知,直線m的所有平行點組成平行于直線m,且到直線m的距離為1的直線設(shè)該直線與x軸交于點A,與y軸交于點B如圖1,當(dāng)點B在原點上方時,作OHAB于點H,可知OH1由直線m的表達式為yx,可知OABOBA45所以直線AB與O的交點即為滿足條件的點Q連接,作軸于點N,可知在中,可求所以在中,可求所以所以點的坐標(biāo)為同理可求點的坐標(biāo)為如圖2,當(dāng)點B在原點

20、下方時,可求點的坐標(biāo)為點的坐標(biāo)為,綜上所述,點Q的坐標(biāo)為,(2)如圖,直線OE的解析式為,設(shè)直線BCOE交x軸于C,作CDOE于D當(dāng)CD1時,在RtCOD中,COD60,設(shè)A與直線BC相切于點F,在RtACE中,同法可得,根據(jù)對稱性可知,當(dāng)A在y軸左側(cè)時,觀察圖象可知滿足條件的N的值為:【點睛】此題考查一次函數(shù)綜合題、直線與圓的位置關(guān)系、銳角三角函數(shù)、解直角三角形等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題20、(1)證明見解析;(2)15.【解析】(1)先連接OD,根據(jù)圓周角定理求出ADB=90,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出

21、EDB=EBD,ODB=OBD,即可求出ODE=90,根據(jù)切線的判定推出即可(2)首先證明AC=2DE=20,在RtADC中,DC=12,設(shè)BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題【詳解】(1)證明:連結(jié)OD,ACB=90,A+B=90,又OD=OB,B=BDO,ADE=A,ADE+BDO=90,ODE=90DE是O的切線;(2)連結(jié)CD,ADE=A,AE=DEBC是O的直徑,ACB=90EC是O的切線DE=ECAE=EC,又DE=10,AC=2DE=20,在RtADC中,DC=

22、設(shè)BD=x,在RtBDC中,BC2=x2+122,在RtABC中,BC2=(x+16)2202,x2+122=(x+16)2202,解得x=9,BC=.【點睛】考查切線的性質(zhì)、勾股定理、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活綜合運用所學(xué)知識解決問題.21、(1)、(2)見解析(3)【解析】試題分析:(1)根據(jù)點的平面直角坐標(biāo)系中點的位置寫出點的坐標(biāo);(2)根據(jù)旋轉(zhuǎn)圖形的性質(zhì)畫出旋轉(zhuǎn)后的圖形;(3)點A所經(jīng)過的路程是以點C為圓心,AC長為半徑的扇形的弧長試題解析:(1)A(0,4)C(3,1)(2)如圖所示:(3)根據(jù)勾股定理可得:AC=3,則考點:圖形的旋轉(zhuǎn)、扇形的弧長計算公式22、(

23、1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時點E的坐標(biāo)為(3)存在點D,使得和相似,此時點D的坐標(biāo)為或【解析】利用二次函數(shù)圖象上點的坐標(biāo)特征可得出點A、B的坐標(biāo),結(jié)合即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;由點A、B的坐標(biāo)可得出直線AB的解析式待定系數(shù)法,由點D的橫坐標(biāo)可得出點D、E的坐標(biāo),進而可得出DE的長度,利用三角形的面積公式結(jié)合即可得出S關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設(shè)點D的坐標(biāo)為,則點E的坐標(biāo)為,進而可得出DE、BD的長度當(dāng)時,利用等腰直角三角形的性質(zhì)可得出,進而可得出關(guān)

24、于m的一元二次方程,解之取其非零值即可得出結(jié)論;當(dāng)時,由點B的縱坐標(biāo)可得出點E的縱坐標(biāo)為4,結(jié)合點E的坐標(biāo)即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論綜上即可得出結(jié)論【詳解】當(dāng)時,有,解得:,點A的坐標(biāo)為當(dāng)時,點B的坐標(biāo)為,解得:,拋物線的解析式為點A的坐標(biāo)為,點B的坐標(biāo)為,直線AB的解析式為點D的橫坐標(biāo)為x,則點D的坐標(biāo)為,點E的坐標(biāo)為,如圖點F的坐標(biāo)為,點A的坐標(biāo)為,點B的坐標(biāo)為,當(dāng)時,S取最大值,最大值為18,此時點E的坐標(biāo)為,與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時點E的坐標(biāo)為,若要和相似,只需或如圖設(shè)點D的坐標(biāo)為,則點E的坐標(biāo)為,當(dāng)時,為等腰直角三角形,即,解

25、得:舍去,點D的坐標(biāo)為;當(dāng)時,點E的縱坐標(biāo)為4,解得:,舍去,點D的坐標(biāo)為綜上所述:存在點D,使得和相似,此時點D的坐標(biāo)為或故答案為:(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時點E的坐標(biāo)為(3)存在點D,使得和相似,此時點D的坐標(biāo)為或【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征、一次函數(shù)圖象上點的坐標(biāo)特征、三角形的面積、二次函數(shù)的性質(zhì)、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關(guān)鍵是:利用二次函數(shù)圖象上點的坐標(biāo)特征求出點A、B的坐標(biāo);利用三角形的面積找出S關(guān)于x的函數(shù)關(guān)系式;分及兩種情況求出點D的坐標(biāo)23、(1)詳見解析;(1)詳見解析;1;.【解析】(1)只要證明BAECDE即可;(1)利用(1)可知EBC是等腰直角三角形,根據(jù)ASA即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論