




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設雙曲線(a0,b0)的一個焦點為F(c,0)(c0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y22cx0截得的弦長為2,則該雙曲線的標準方程為( )ABCD2若復
2、數(為虛數單位),則的共軛復數的模為( )AB4C2D3若集合,則ABCD4五行學說是華夏民族創造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為( )ABCD5設,是兩條不同的直線,是兩個不同的平面,給出下列四個命題:若,則;若,則;若,則;若,則;其中真命題的個數為( )ABCD6如圖,設為內一點,且,則與的面積之比為ABCD7函數的圖像大致為( )ABCD8已知函數()的部分圖象如圖所示.則( )ABCD9已知為一條直線,為兩個不同的平面
3、,則下列說法正確的是( )A若,則B若,則C若,則D若,則10設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為( )ABCD11射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數的底數,為被測物厚度,為被測物的密度,是被測物對射線的吸收系數.工業上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數為( )(注:半價層厚度是指將已知射線強度減弱為一半的某種物質厚度,結果精確到0.001)A0.110B0.112CD12設,隨機變量的分布列是01則當在內增大時,( )A減
4、小,減小B減小,增大C增大,減小D增大,增大二、填空題:本題共4小題,每小題5分,共20分。13 “今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈”其白話意譯為:“現有一善織布的女子,從第2天開始,每天比前一天多織相同數量的布,第一天織了5尺布,現在一個月(按30天計算)共織布390尺”則每天增加的數量為_尺,設該女子一個月中第n天所織布的尺數為,則_14已知,(,),則_15已知集合,則_16數據的標準差為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.()求證:;()若點在線段上,且平面,求二面角的余
5、弦值.18(12分)在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出的普通方程和的直角坐標方程;(2)設點在上,點在上,求的最小值以及此時的直角坐標.19(12分)如圖,在四棱錐PABCD中,PA平面ABCD,ABCBAD90,ADAP4,ABBC2,M為PC的中點(1)求異面直線AP,BM所成角的余弦值;(2)點N在線段AD上,且AN,若直線MN與平面PBC所成角的正弦值為,求的值20(12分)已知函數.(1)若函數,求的極值;(2)證明:. (參考數據: )21(12分)已知圓的極坐標方程是,以極點為平面直角坐標系
6、的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是是參數),若直線與圓相切,求實數的值.22(10分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】由題得,又,聯立解方程組即可得,進而得出雙曲線方程.【詳解】由題得 又該雙曲線的一條漸近線方程為,且被圓x2+y22cx0截得的弦
7、長為2,所以 又 由可得:,所以雙曲線的標準方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,圓的方程的有關計算,考查了學生的計算能力.2D【解析】由復數的綜合運算求出,再寫出其共軛復數,然后由模的定義計算?!驹斀狻?,故選:D【點睛】本題考查復數的運算,考查共軛復數與模的定義,屬于基礎題3C【解析】解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.4A【解析】列舉出金、木、水、火、土任取兩個的所有結果共10種,其中2類元素相生的結果有5種,再根據古典概型概率公式可得結果.【詳解】金、木、水、火、土任取兩類,共有:金
8、木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有 (1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,. ,再,.依次. 這樣才能避免多寫、漏寫現象的發生.5C【解析】利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直
9、于這個平面,那么另一條也垂直于這個平面知正確;當直線平行于平面與平面的交線時也有,故錯誤;若,則垂直平面內以及與平面平行的所有直線,故正確;若,則存在直線且,因為,所以,從而,故正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.6A【解析】作交于點,根據向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,且,所以又,所以,即,所以本題答案為A.【點睛】本題考查三角函數與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.7A【解析】根據排除,利用極限思想進
10、行排除即可【詳解】解:函數的定義域為,恒成立,排除,當時,當,排除,故選:【點睛】本題主要考查函數圖象的識別和判斷,利用函數值的符號以及極限思想是解決本題的關鍵,屬于基礎題8C【解析】由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,即,解得;因為所以,當時,.故選:C.【點睛】本題主要考查了由三角函數的圖象求解析式和已知函數值求自變量,考查三角恒等變換在三角函數化簡中的應用,難度一般.9D【解析】A. 若,則或,故A錯誤;B. 若,則或故B錯誤;C. 若,則或,或與相交;D. 若,則,正確.故選D.10D【解析】利用向量運算可得,即,由為的中位線,得到,所以,
11、再根據雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.11C【解析】根據題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數為.故選:C【點睛】本題主要考查知識的遷移能力,把數學知識與物理知識相融合;重點考查指數型函數,利用指數的相關性質來研究指數型函數的性質,以及解指數型方程;屬于中檔題.12C【解析】,判斷其在內的單調性即可【詳解】解:根據題意在內遞增,是以為對稱軸,開口向下的拋物線,所以在上單調遞減,故選:C【點睛】本
12、題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13 52 【解析】設從第2天開始,每天比前一天多織尺布,由等差數列前項和公式求出,由此利用等差數列通項公式能求出.【詳解】設從第2天開始,每天比前一天多織d尺布,則,解得,即每天增加的數量為,故答案為,52.【點睛】本題主要考查等差數列的通項公式、等差數列的求和公式,意在考查利用所學知識解決問題的能力,屬于中檔題.14【解析】先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】,則,平方可得故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關鍵,側重考
13、查數學運算的核心素養.15【解析】解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,.故答案為:.【點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎題.16【解析】先計算平均數再求解方差與標準差即可.【詳解】解:樣本的平均數, 這組數據的方差是 標準差,故答案為:【點睛】本題主要考查了標準差的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17()見解析()【解析】()推導出BCCE,從而EC平面ABCD,進而ECBD,再由BDAE,得BD平面AEC,從而BDAC,進而四邊形ABCD是菱形,由此能證明AB=AD.(
14、)設AC與BD的交點為G,推導出EC/ FG,取BC的中點為O,連結OD,則ODBC,以O為坐標原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】()證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:()設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所以面,以為坐標原點,以過點且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系.不妨設,則,設平面的法向量,則,
15、取,同理可得平面的法向量,設平面與平面的夾角為,因為,所以二面角的余弦值為.解法二:()設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,所以平面,所以,取中點,連接、,因為,所以,故平面,所以,即是二面角的平面角,不妨設,因為,在中,所以,所以二面角的余弦值為.【點睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關系進而證明線線相等,屬于中檔題.18(1):,:;(2),此時.【解析】試題分析:(1)的普通方程為,的直角坐標方程為;(2)由題意,可設點的直角坐標為到的距離當且僅當時,取得最小值,最小值為,此時的直角坐標為.試題解析: (1)的普通方程為,的直
16、角坐標方程為.(2)由題意,可設點的直角坐標為,因為是直線,所以的最小值即為到的距離的最小值,.當且僅當時,取得最小值,最小值為,此時的直角坐標為.考點:坐標系與參數方程.【方法點睛】參數方程與普通方程的互化:把參數方程化為普通方程,需要根據其結構特征,選取適當的消參方法,常見的消參方法有:代入消參法;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等把曲線的普通方程化為參數方程的關鍵:一是適當選取參數;二是確?;セ昂蠓匠痰牡葍r性注意方程中的參數的變化范圍19(1).(2)1【解析】(1)先根據題意建立空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2,由AN,設N
17、(0,0)(04),則(1,1,2),再求得平面PBC的一個法向量,利用直線MN與平面PBC所成角的正弦值為,由|cos,|求解.【詳解】(1) 因為PA平面ABCD,且AB,AD平面ABCD,所以PAAB,PAAD.又因為BAD90,所以PA,AB,AD兩兩互相垂直分別以AB,AD,AP為x,y,z軸建立空間直角坐標系,則由AD2AB2BC4,PA4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4)又因為M為PC的中點,所以M(1,1,2)所以(1,1,2),(0,0,4),所以cos,所以異面直線AP,BM所成角的余弦值為.(2) 因為AN,所以N
18、(0,0)(04),則(1,1,2),(0,2,0),(2,0,4)設平面PBC的法向量為(x,y,z),則即令x2,解得y0,z1,所以(2,0,1)是平面PBC的一個法向量因為直線MN與平面PBC所成角的正弦值為,所以|cos,|,解得10,4,所以的值為1.【點睛】本題主要考查了空間向量法研究空間中線線角,線面角的求法及應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.20(1)見解析;(1)見證明【解析】(1)求出函數的導數,解關于導函數的不等式,求出函數的單調區間,從而求出函數的極值即可;(1)問題轉化為證exx1xlnx10,根據xlnxx(x1),問題轉化為只需證明當x0
19、時,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),根據函數的單調性證明即可【詳解】(1),當,當,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1exx1即證exx1xlnx10,先證明lnxx1,取h(x)lnxx+1,則h(x),易知h(x)在(0,1)遞增,在(1,+)遞減,故h(x)h(1)0,即lnxx1,當且僅當x1時取“”,故xlnxx(x1),exx1xlnxex1x1+x1,故只需證明當x0時,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),則k(x)ex4x+1,令F(x)k(x),則F(x)ex4,令F(x)0,解得:x1ln1,F(x)遞增,故x(0,1ln1時,F(x)0,F(x)遞減,即k(x)遞減,x(1ln1,+)時,F(x)0,F(x)遞增,即k(x)遞增,且k(1ln1)58ln10,k(0)10,k(1)e18+10,由零點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業園區電氣系統設計與施工策略
- 工業大數據在制造業中的應用
- 工業安全與防護技術的發展
- 工業污染源的環境監測與管理
- 工業廢水處理廠的環境監控技術
- 工業污染控制與環境保護技術
- 工業生產中的事故分析與預防
- 工業綠色改造的途徑與策略
- 工業自動化與智能制造的探討
- 工業設計與智能制造技術
- 2024-2025學年人教版一年級下數學期末試卷(含答案)
- 行車干擾施工方案
- 植物拓染教學課件
- 2025-2030年中國微電網行業市場深度調研及發展前景與投資研究報告
- 訪談保密協議書范本
- 通信故障應急處理及恢復流程
- 網絡通信技術應用 課件 2.11 DHCP協議與應用
- 2023年5月全國事業單位考試聯考D類中學綜合應用能力真題試題試卷答案解析
- 成人體外心肺復蘇專家共識更新(2023版)解讀
- 山東開放大學招聘筆試真題2024
- 集資買房協議書范本
評論
0/150
提交評論