2022屆北京市魯迅高三一診考試數學試卷含解析_第1頁
2022屆北京市魯迅高三一診考試數學試卷含解析_第2頁
2022屆北京市魯迅高三一診考試數學試卷含解析_第3頁
2022屆北京市魯迅高三一診考試數學試卷含解析_第4頁
2022屆北京市魯迅高三一診考試數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數學模擬試卷考生須知:1全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖:根據頻率分布直方圖,可知這部分男生的身高的中位數的估計值為ABCD2已知橢圓:的左,右

2、焦點分別為,過的直線交橢圓于,兩點,若,且的三邊長,成等差數列,則的離心率為( )ABCD3若P是的充分不必要條件,則p是q的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件4若變量,滿足,則的最大值為( )A3B2CD105網絡是一種先進的高頻傳輸技術,我國的技術發展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數據.如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月,5代表2019年12月,根據數據得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,

3、則最早何時該款手機市場占有率能超過0.5%(精確到月)( )A2020年6月B2020年7月C2020年8月D2020年9月6若,則( )ABCD7若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為( )AB2CD8設,則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件9在三棱錐中,點到底面的距離為2,則三棱錐外接球的表面積為( )ABCD10函數的圖象可能是( )ABCD11將函數圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),再向右平移個單位長度,則所得函數圖象的一個對稱中心為( )ABCD12已知數列是公差為的等差數列,且成等比數列,則( )A4

4、B3C2D1二、填空題:本題共4小題,每小題5分,共20分。13的展開式中,常數項為_;系數最大的項是_.14已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則_;四棱錐P-ABCD的體積為_.15已知點是雙曲線漸近線上的一點,則雙曲線的離心率為_16在中,則_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)如圖所示,在四面體中,平面平面,且.(1)證明:平面;(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.18(12分)已知函數.(1)當時,求函數的值域.(2)設函數,若,且的

5、最小值為,求實數的取值范圍.19(12分)已知函數.(1)討論的單調性;(2)若函數在區間上的最小值為,求m的值.20(12分)已知正數x,y,z滿足xyzt(t為常數),且的最小值為,求實數t的值.21(12分)已知在四棱錐中,平面,在四邊形中,為的中點,連接,為的中點,連接.(1)求證:.(2)求二面角的余弦值.22(10分)本小題滿分14分)已知曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數方程為(為參數),求直線被曲線截得的線段的長度參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解

6、析】由題可得,解得,則,所以這部分男生的身高的中位數的估計值為,故選C2C【解析】根據等差數列的性質設出,利用勾股定理列方程,結合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,成等差數列,設,.由于,據勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數列的性質,屬于中檔題.3B【解析】試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,

7、“若則q”為假,故選B考點:邏輯命題4D【解析】畫出約束條件的可行域,利用目標函數的幾何意義求解最大值即可【詳解】解:畫出滿足條件的平面區域,如圖示:如圖點坐標分別為,目標函數的幾何意義為,可行域內點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規劃問題,考查數形結合思想,屬于中檔題5C【解析】根據圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數以及線性回歸方程的實際應用,基礎題.6C【解析】利用指數函數和對數函數的單調性比較、三

8、個數與和的大小關系,進而可得出、三個數的大小關系.【詳解】對數函數為上的增函數,則,即;指數函數為上的增函數,則;指數函數為上的減函數,則.綜上所述,.故選:C.【點睛】本題考查指數冪與對數式的大小比較,一般利用指數函數和對數函數的單調性結合中間值法來比較,考查推理能力,屬于基礎題.7D【解析】利用復數代數形式的乘除運算化簡,再由實部為求得值【詳解】解:在復平面內所對應的點在虛軸上,即故選D【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題8B【解析】先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據

9、此可知“”是“”的必要不充分條件故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數學運算,邏輯推理能力,屬于基礎題.9C【解析】首先根據垂直關系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據長度關系可構造等式求得半徑,進而求出球的表面積【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,為的中點由球的性質可知:平面,且設,在中,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為故選:.【點睛】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關問題的關鍵是能夠利用球的性質確定外接球

10、球心的位置.10A【解析】先判斷函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】函數的定義域為,該函數為偶函數,排除B、D選項;當時,排除C選項.故選:A.【點睛】本題考查根據函數的解析式辨別函數的圖象,一般分析函數的定義域、奇偶性、單調性、零點以及函數值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.11D【解析】先化簡函數解析式,再根據函數的圖象變換規律,可得所求函數的解析式為,再由正弦函數的對稱性得解.【詳解】,將函數圖象上各點的橫坐標伸長到原來的3倍,所得函數的解析式為,再向右平移個單位長度,所得函數的解析式為,,可得函數圖象的一個對

11、稱中心為,故選D.【點睛】三角函數的圖象與性質是高考考查的熱點之一,經常考查定義域、值域、周期性、對稱性、奇偶性、單調性、最值等,其中公式運用及其變形能力、運算能力、方程思想等可以在這些問題中進行體現,在復習時要注意基礎知識的理解與落實三角函數的性質由函數的解析式確定,在解答三角函數性質的綜合試題時要抓住函數解析式這個關鍵,在函數解析式較為復雜時要注意使用三角恒等變換公式把函數解析式化為一個角的一個三角函數形式,然后利用正弦(余弦)函數的性質求解12A【解析】根據等差數列和等比數列公式直接計算得到答案.【詳解】由成等比數列得,即,已知,解得.故選:.【點睛】本題考查了等差數列,等比數列的基本量

12、的計算,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13 【解析】求出二項展開式的通項,令指數為零,求出參數的值,代入可得出展開式中的常數項;求出項的系數,利用作商法可求出系數最大的項.【詳解】的展開式的通項為,令,得,所以,展開式中的常數項為;令,令,即,解得,因此,展開式中系數最大的項為.故答案為:;.【點睛】本題考查二項展開式中常數項的求解,同時也考查了系數最大項的求解,涉及展開式通項的應用,考查分析問題和解決問題的能力,屬于中等題.1490 【解析】易得平面PAD,P點在與BA垂直的圓面內運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球

13、的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內運動,易知,當P、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為: (1) 90 ; (2) .【點睛】本題四棱錐外接球有關的問題,考查學生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.15【解析】先表示出漸近線,再代入點,求出,則離心率易求.【詳解】解:的漸近線是因為在漸近線上,所以,故答案為:【點睛】考查雙曲線的離心率的求法,是基礎題.161【解析】由已知利用

14、余弦定理可得,即可解得的值【詳解】解:,由余弦定理,可得,整理可得:,解得或(舍去)故答案為:1【點睛】本題主要考查余弦定理在解三角形中的應用,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)見證明;(2)【解析】(1)根據面面垂直的性質得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設,利用椎體的體積公式求得 ,利用導數研究函數的單調性,從而求得時,四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因為,平面平面,平面平面,平面,所以平面,因為平面,所以.因為,所以,所以,因為,所以平面.(2)解:設

15、,則,四面體的體積 . ,當時,單調遞增;當時,單調遞減.故當時,四面體的體積取得最大值.以為坐標原點,建立空間直角坐標系,則,.設平面的法向量為,則,即,令,得,同理可得平面的一個法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】該題考查的是有關立體幾何的問題,涉及到的知識點有面面垂直的性質,線面垂直的判定,椎體的體積,二面角的求法,在解題的過程中,注意巧用導數求解體積的最大值.18(1);(2).【解析】(1)令,求出的范圍,再由指數函數的單調性,即可求出結論;(2)對分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關系,求出的值,進而求出的取值關系.【詳解】(1)

16、當時, 令,而是增函數,函數的值域是.(2)當時,則在上單調遞減,在上單調遞增,所以的最小值為,在上單調遞增,最小值為,而的最小值為,所以這種情況不可能.當時,則在上單調遞減且沒有最小值,在上單調遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實數的取值范圍是.【點睛】本題考查復合函數的值域與分段函數的最值,熟練掌握二次函數圖像和性質是解題的關鍵,屬于中檔題.19(1)見解析 (2)【解析】(1)先求導,再對m分類討論,求出的單調性;(2)對m分三種情況討論求函數在區間上的最小值即得解.【詳解】(1) 若,當時,;當時.,所以在上單調遞增,在上單調遞減若.在R上單調遞增 若,當

17、時,;當時.,所以在上單調遞增,在上單調遞減 (2)由(1)可知,當時,在上單調遞增,則.則不合題意 當時,在上單調遞減,在上單調遞增.則,即 又因為單調遞增,且,故 綜上,【點睛】本題主要考查利用導數研究函數的單調性和最值,意在考查學生對這些知識的理解掌握水平.20t1【解析】把變形為結合基本不等式進行求解.【詳解】因為即,當且僅當,時,上述等號成立,所以,即,又x,y,z0,所以xyzt1【點睛】本題主要考查基本不等式的應用,利用基本不等式求解最值時要注意轉化為適用形式,同時要關注不等號是否成立,側重考查數學運算的核心素養.21(1)見解析;(2)【解析】(1)連接,證明,得到面,得到證明.(2)以,所在直線分別為,軸建立空間直角坐標系,為平面的法向量,平面的一個法向量為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論