




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第第7 7節二項分布與正態分布節二項分布與正態分布知識鏈條完善知識鏈條完善考點專項突破考點專項突破經典考題研析經典考題研析知識鏈條完善知識鏈條完善 把散落的知識連起來把散落的知識連起來【教材導讀】【教材導讀】 1.1.條件概率和一般概率的關系是什么條件概率和一般概率的關系是什么? ?提示提示: :一般概率的性質對條件概率都適用一般概率的性質對條件概率都適用, ,是特殊與一般的關系是特殊與一般的關系. .2.2.事件事件A,BA,B相互獨立的意義是什么相互獨立的意義是什么? ?提示提示: :一個事件發生的概率對另一個事件發生的概率沒有影響一個事件發生的概率對另一個事件發生的概率沒有影響. .4.
2、4.正態分布中最為重要的是什么正態分布中最為重要的是什么? ?提示提示: :概念以及正態分布密度曲線的對稱性概念以及正態分布密度曲線的對稱性. .知識梳理知識梳理 P(B|A)+P(C|A) P(B|A)+P(C|A) 2.2.事件的相互獨立性事件的相互獨立性(1)(1)定義定義設設A A、B B為兩個事件為兩個事件, ,若若P(AB)=P(AB)= , ,則稱事件則稱事件A A與事件與事件B B相互獨立相互獨立. .P(A)P(B)P(A)P(B)B B 3.3.獨立重復試驗與二項分布獨立重復試驗與二項分布(1)(1)獨立重復試驗獨立重復試驗一般地一般地, ,在在 條件下重復做的條件下重復做
3、的n n次試驗稱為次試驗稱為n n次獨立重復試驗次獨立重復試驗. .相同相同X XB(n,p) B(n,p) p p 4.4.兩點分布與二項分布的均值、方差兩點分布與二項分布的均值、方差(1)(1)若若X X服從兩點分布服從兩點分布, ,則則E(X)=E(X)= ,D(X)=,D(X)= . .(2)(2)若若X XB(n,p),B(n,p),則則E(X)=E(X)= ,D(X)=,D(X)= . .p pp(1-p)p(1-p)npnpnp(1-p)np(1-p)(2)(2)正態曲線的特點正態曲線的特點曲線位于曲線位于x x軸軸 , ,與與x x軸不相交軸不相交; ;曲線是單峰的曲線是單峰的
4、, ,它關于直線它關于直線 對稱對稱; ;上方上方x=x=x= x= 曲線與曲線與x x軸之間的面積為軸之間的面積為 ; ;1 1當當一定時一定時, ,曲線的位置由曲線的位置由 確定確定, ,曲線隨著曲線隨著的變化而沿的變化而沿x x軸平移軸平移, ,如圖如圖(1)(1)所示所示; ;當當一定時一定時, ,曲線的形狀由曲線的形狀由確定確定, , ,曲線越曲線越“瘦高瘦高”, ,表示總表示總體的分布越集中體的分布越集中; , ,曲線越曲線越“矮胖矮胖”, ,表示總體的分布越分散表示總體的分布越分散, ,如如圖圖(2)(2)所示所示. .(3)(3)正態總體在三個特殊區間內取值的概率值正態總體在三
5、個特殊區間內取值的概率值P(- X+)=0.682 6;P(- X+)=0.682 6;P(-2 X+2)=0.954 4;P(-2 X+2)=0.954 4;P(-3 X+3)=0.997 4.P(-3 0.P(X0)=1-P(X=0)=1-(1-0.7)X0.P(X0)=1-P(X=0)=1-(1-0.7)3 3=0.973.=0.973.答案答案: :0.9730.9734.4.拋擲一枚質地均勻的骰子拋擲一枚質地均勻的骰子, ,所得點數的樣本空間為所得點數的樣本空間為S=1,2,3,4,5,6,S=1,2,3,4,5,6,令事件令事件A=2,3,5,A=2,3,5,事件事件B=1,2,4
6、,5,6,B=1,2,4,5,6,則則P(A|B)P(A|B)的值為的值為.5.5.若若X XN(5,1),N(5,1),則則P(6X7)=P(6X7)=.答案答案: :0.135 90.135 9考點專項突破考點專項突破 在講練中理解知識在講練中理解知識考點一考點一 條件概率條件概率答案答案: :(1)C (1)C (2)(2)設設100100件產品中有件產品中有7070件一等品件一等品,25,25件二等品件二等品, ,規定一、二等品為合格品規定一、二等品為合格品. .從中任取從中任取1 1件件, ,已知取得的是合格品已知取得的是合格品, ,則它是一等品的概率是則它是一等品的概率是.反思歸納
7、反思歸納 (1)(1)一般情況下條件概率的計算只能按照條件概率的定一般情況下條件概率的計算只能按照條件概率的定義套用公式進行義套用公式進行, ,在計算時要注意搞清楚問題的事件含義在計算時要注意搞清楚問題的事件含義, ,特別注意在特別注意在事件事件A A包含事件包含事件B B時時,AB=B.,AB=B.【即時訓練】【即時訓練】 (1)(1)一個箱中有一個箱中有9 9張標有張標有1,2,3,4,5,6,7,8,91,2,3,4,5,6,7,8,9的卡片的卡片, ,從從中依次取兩張中依次取兩張, ,則在第一張是奇數的條件下第二張也是奇數的概率是則在第一張是奇數的條件下第二張也是奇數的概率是. (2)
8、(2)某種家用電器能使用三年的概率為某種家用電器能使用三年的概率為0.8,0.8,能使用四年的概率為能使用四年的概率為0.4,0.4,已知某一這種家用電器已經使用了三年已知某一這種家用電器已經使用了三年, ,則它能夠使用到四年的概率則它能夠使用到四年的概率是是.答案答案: : (2)0.5 (2)0.5考點二考點二獨立事件的概率獨立事件的概率 【例【例2 2】 紅隊隊員甲、乙、丙與藍隊隊員紅隊隊員甲、乙、丙與藍隊隊員A,B,CA,B,C進行圍棋比賽進行圍棋比賽, ,甲對甲對A A、乙、乙對對B B、丙對、丙對C C各一盤各一盤. .已知甲勝已知甲勝A A、乙勝、乙勝B B、丙勝、丙勝C C的概
9、率分別為的概率分別為0.6,0.5,0.5.0.6,0.5,0.5.假設各盤比賽結果相互獨立假設各盤比賽結果相互獨立. .(1)(1)求紅隊至少兩名隊員獲勝的概率求紅隊至少兩名隊員獲勝的概率; ;(2)(2)用用表示紅隊隊員獲勝的總盤數表示紅隊隊員獲勝的總盤數, ,求求的分布列的分布列. .反思歸納反思歸納 概率計算的核心環節就是把一個隨機事件進行分解概率計算的核心環節就是把一個隨機事件進行分解, ,這中這中間有三個概念間有三個概念, ,事件的互斥、事件的對立和事件的相互獨立事件的互斥、事件的對立和事件的相互獨立, ,在概率的計在概率的計算中只要弄清楚了這三個概念算中只要弄清楚了這三個概念,
10、,根據實際情況對事件進行合理的分解根據實際情況對事件進行合理的分解, ,就就能把復雜事件的概率計算轉化為一個個簡單事件的概率計算能把復雜事件的概率計算轉化為一個個簡單事件的概率計算, ,達到解決達到解決問題的目的問題的目的. .(2)(2)設甲、乙兩人所付的租車費用之和為隨機變量設甲、乙兩人所付的租車費用之和為隨機變量,求求的分布列的分布列. .二項分布二項分布 考點三考點三 (2)(2)若某顧客有若某顧客有3 3次抽獎機會次抽獎機會, ,記該顧客在記該顧客在3 3次抽獎中獲一等獎的次數為次抽獎中獲一等獎的次數為X,X,求求X X的分布列和數學期望的分布列和數學期望. .反思歸納反思歸納 在實
11、際問題中具體列出服從二項分布的隨機變量的概率在實際問題中具體列出服從二項分布的隨機變量的概率分布列對解決問題有直觀作用分布列對解決問題有直觀作用, ,求解服從二項分布的隨機變量的概率分求解服從二項分布的隨機變量的概率分布列和數學期望布列和數學期望, ,只要按照公式計算即可只要按照公式計算即可. .【即時訓練】【即時訓練】 (2015(2015北京豐臺高三期末北京豐臺高三期末) )某市為了了解本市高中學生的某市為了了解本市高中學生的漢字書寫水平漢字書寫水平, ,在全市范圍內隨機抽取了近千名學生參加漢字聽寫考試在全市范圍內隨機抽取了近千名學生參加漢字聽寫考試, ,將所得數據整理后將所得數據整理后,
12、 ,繪制出頻率分布直方圖如圖所示繪制出頻率分布直方圖如圖所示, ,其中樣本數據分組其中樣本數據分組區間為區間為50,60),60,70),70,80),80,90),90,100.50,60),60,70),70,80),80,90),90,100.(1)(1)如果從參加本次考試的同學中隨機選取如果從參加本次考試的同學中隨機選取1 1名同學名同學, ,求這名同學考試成求這名同學考試成績在績在8080分以上分以上( (含含8080分分) )的概率的概率; ;(2)(2)如果從參加本次考試的同學中隨機選取如果從參加本次考試的同學中隨機選取3 3名同學名同學, ,這這3 3名同學中考試成名同學中考試
13、成績在績在8080分以上分以上( (含含8080分分) )的人數記為的人數記為X,X,求求X X的分布列和數學期望的分布列和數學期望.(.(注注: :頻率頻率可以視為相應的概率可以視為相應的概率) )正態分布正態分布考點四考點四 【即時訓練】【即時訓練】 (1)(2015(1)(2015高考山東卷高考山東卷) )已知某批零件的長度誤差已知某批零件的長度誤差( (單位單位: :毫米毫米) )服從正態分布服從正態分布N(0,3N(0,32 2),),從中隨機取一件從中隨機取一件, ,其長度誤差落在區間其長度誤差落在區間(3,6)(3,6)內的概率為內的概率為( () )(A)4.56%(A)4.5
14、6%(B)13.59%(B)13.59%(C)27.18%(C)27.18%(D)31.74%(D)31.74%(2)(2015(2)(2015高考湖南卷高考湖南卷) )在如圖所示的正方形中隨機投擲在如圖所示的正方形中隨機投擲10 00010 000個點個點, ,則則落入陰影部分落入陰影部分( (曲線曲線C C為正態分布為正態分布N(0,1)N(0,1)的密度曲線的密度曲線) )的點的個數的估計的點的個數的估計值為值為( () )(A)2 386(A)2 386(B)2 718(B)2 718(C)3 413(C)3 413(D)4 772(D)4 772備選例題備選例題 【例【例2 2】 (
15、2014(2014高考遼寧卷高考遼寧卷) )一家面包房根據以往某種面包的銷售記錄一家面包房根據以往某種面包的銷售記錄, ,繪制了日銷售量的頻率分布直方圖繪制了日銷售量的頻率分布直方圖, ,如圖所示如圖所示. .將日銷售量落入各組的頻率視為概率將日銷售量落入各組的頻率視為概率, ,并假設每天的銷售量相互獨立并假設每天的銷售量相互獨立. .(1)(1)求在未來連續求在未來連續3 3天里天里, ,有連續有連續2 2天的日銷售量都不低于天的日銷售量都不低于100100個且另個且另1 1天天的日銷售量低于的日銷售量低于5050個的概率個的概率; ;(2)(2)用用X X表示在未來表示在未來3 3天里日銷
16、售量不低于天里日銷售量不低于100100個的天數個的天數, ,求隨機變量求隨機變量X X的的分布列分布列, ,期望期望E(X)E(X)及方差及方差D(X).D(X).(2)(2)設甲一周內有四天設甲一周內有四天( (每天租車一次每天租車一次) )均租車上班均租車上班,X,X表示一周內租車費用表示一周內租車費用不超過不超過2 2元的次數元的次數, ,求求X X的分布列與數學期望的分布列與數學期望. .經典考題研析經典考題研析 在經典中學習方法在經典中學習方法命題意圖命題意圖: :(1)(1)本題考查樣本的頻率分布、樣本均值和方差的估計、正本題考查樣本的頻率分布、樣本均值和方差的估計、正態分布中的概率計算、二項分布的數學期望等基礎知識態分布中的概率計算、二項分布的數學期望等基礎知識, ,考查綜合運用考查綜合運用概率統計知識分析問題解決問題的能力概率統計知識分析問題解決問題的能力.(2).(2)一般的樣本頻率分布在樣一般的樣本頻率分布在樣本容量無限加大、組距無限減
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市地下車庫租賃與改造合同
- 終止勞動合同模板錦集(18篇)
- 宗教協會印章管理制度
- 大學生在校創新創業計劃書范文(13篇)
- 行政組織的績效管理體系構建試題及答案
- 工作競聘精彩演講稿范文(18篇)
- 公司與個人勞動合同(4篇)
- 農業生產技術應用合作合同書
- 合作酒店經營合同(3篇)
- 退休人員合同(5篇)
- 鋁錠生產工藝流程
- 艾灸師(高級)職業技能競賽考試題庫
- 2025年拖欠工資分期支付協議書模板
- 高考物理電磁感應中含電容單桿模型解析
- 《心臟驟停的急救護理》課件
- 做最勇敢的自己
- 2024年歷年江西農商銀行員工招聘筆試真題
- 人工智能賦能科研管理
- 2025版亞馬遜FBA物流配送及電商運營服務合同3篇
- 不良資產處置模式演進探析
- 金屬非金屬礦山安全作業實際操作考評標準
評論
0/150
提交評論