




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、AIAAJOURNALVol.42,No.9,September2004StabilizationofLinearFlowSolverforTurbomachineryAeroelasticityUsingRecursiveProjectionMethodM.S.CampobassoandMichaelB.GilesOxfordUniversity,Oxford,EnglandOX13QD,UnitedKingdomThelinearanalysisofturbomachineryaeroelasticityreliesontheassumptionofsmalllevelofunsteadi
2、nessandrequiresthesolutionofboththenonlinearsteadyandthelinearunsteadyowequations.Theobjectiveoftheanalysisistocomputeacomplexowsolutionthatrepresentstheamplitudeandphaseoftheunsteadyowperturbationforthefrequencyofunsteadinessofinterest.ThesolutionprocedureofthelinearharmonicEuler/NavierStokessolver
3、oftheHYDRAsuiteofcodesconsistsofapreconditionedxed-pointiteration,whichinsomecircumstancesbecomesnumericallyunstable.PreviousworkhadalreadyhighlightedthephysicaloriginofthesenumericalinstabilitiesanddemonstratedthecodestabilizationachievedbywrappingthecorepartofthelinearcodewithaGeneralizedMinimalRe
4、sidual(GMRES)solver.Theimplementationandtheuseofanalternativealgorithm,namely,theRecursiveProjectionMethod,issummarized.Thissolverisshowntobewellsuitedforbothstabilizingthexed-pointiterationandimprovingitsconvergencerateintheabsenceofnumericalinstabilities.Intheframeworkofthelinearanalysisofturbomac
5、hineryaeroelasticity,thismethodcanbecomputationallycompetitivewiththeGMRESapproach.I.IntroductionHEaeroelasticphenomenaofconcernintheturbomachineryindustryarebladeutterandforcedresponse,1astheycanbothleadtodramaticmechanicalfailuresifnotproperlyaccountedforinthedesignoftheengine.Thebladesofanassembl
6、ycanun-dergouttervibrationswhentheaerodynamicdampingassociatedwithcertainowregimesbecomesnegativeandisnotcounterbal-ancedbythemechanicaldamping.Insuchcircumstances,thefreevibrationofthebladestriggeredbyanytemporaryperturbationissustainedthroughtheenergyfedintothestructurebytheunsteadyaerodynamicforc
7、es.2Thehighcyclefatigue(HCF)causedbythesevibrationscanshortenthelifeofthebladesbelowthetargetlifeoftheengine.BladeforcedresponsecanalsoleadtoHCFandiscausedbytherelativemotionofadjacentframesofreference,whichtransformssteadycircumferentialvariationsoftheoweldinoneframeintoperiodictime-varyingforcesac
8、tingonthebladesintheother.Well-knownexamplesincludeforcingcausedbythewakesshedbyanupstreambladerow3andcircumferentialnonuniformitiesproducedbydistressedupstreamvanes.4Theestimationofboththemeanenergyuxbetweenuidandstructureintheuttercaseandtheunsteadyforcesactingonthebladesintheforcedresponseproblem
9、requiresknowledgeoftheunsteadyoweld.Overthepasttwodecades,anumberofap-proacheshaveemergedtocarryouttheanalysisofturbomachin-eryaeroacousticsandaeroelasticity.5Thesemethodsvaryfromun-coupledlinearizedpotentialowsolversinwhichthestructuralequationsaresolvedindependentlyoftheaerodynamics6,7tofullycoupl
10、ednonlinearthree-dimensionalunsteadyviscousmethodsinwhichthestructuralandaerodynamictime-dependentequationsaresolvedsimultaneously.8Withinthisrangetheuncoupledlinearhar-monicEulerandNavierStokes(NS)methods912haveprovedtobeasuccessfulcompromisebetweenaccuracyandcost.Thismethodviewstheaerodynamicunste
11、adinessasasmallperturbationoftheReceived21March2003;revisionreceived13February2004;acceptedc2004byM.S.Campobassoandforpublication17April2004.CopyrightMichaelB.Giles.PublishedbytheAmericanInstituteofAeronauticsandAstronautics,Inc.,withpermission.Copiesofthispapermaybemadeforpersonalorinterna
12、luse,onconditionthatthecopierpaythe$10.00per-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923;includethecode0001-1452/04$10.00incorrespondencewiththeCCC.ResearchOfcer,ComputingLaboratory,ParksRoad.ProfessorofComputationalFluidDynamics,ComputingLaboratory,ParksRoad.LifetimeM
13、emberAIAA.1765Tspace-periodicmeansteadyow.Hencetheunsteadyoweldcanbelinearizedaboutitandbecauseoflinearitycanbedecomposedintoasumofharmonicterms,eachofwhichcanbecomputedin-dependently.Thecyclicperiodicityofboththesteadyandunsteadyowleadstoagreatreductionofcomputationalcostsbecausetheanalysiscanfocus
14、ononebladepassageratherthanthewholebladerowbymakinguseofsuitableperiodicboundaryconditions.Theas-sumptionofsmallamplitudeoftheaerodynamicunsteadinessoftenallowsonetoneglectboththecouplingandvariationsofstructuraleigenmodescausedbytheaerodynamicforces.1Thereforethein-vestigationcanbecarriedoutconside
15、ringonestructuralmodeatatime,determinedbyaniteelementprogramandusedasaninputforcalculatingtheunsteadyaerodynamicforces.Thecompleteaerody-namicanalysisconsistsoftwophases:1)calculationofthenonlinearsteadyoweldaboutwhichthelinearizationisperformedand2)solutionofthelinearharmonicequations.TheHYDRAsuite
16、ofparallelcodes1316includesbothanon-linear(hyd)andalinearharmonic(hydlin)Euler/NSsolver.Thesolutionprocedureforbothhydandhydlincanbeviewedasapre-conditionedxed-pointiteration.Usuallythelinearcodeconvergeswithoutdifculty,butproblemshavebeenencounteredinsituationsinwhichthemeanowcalculationitselffaile
17、dtoconvergetoasteadystatebutinsteadnishedinalow-levellimitcycle,oftenre-latedtosomephysicalphenomenonsuchasvortexsheddingatablunttrailingedge,unsteadyshock/boundarylayer,orshock/wakeinteraction.Inthesecircumstancesthelinearxed-pointiterationonwhichhydlinisbasedbecomesunstable,leadingtoanexponentialg
18、rowthoftheresiduals.TherelationshipbetweentheseinstabilitiesandthephysicalfeaturesoftheunderlyingbaseowisdiscussedinRef.17,whichalsosummarizesthesuccessfulimplementationofaGeneralizedMinimalResidual(GMRES)algorithm18aimedatretrievingthenumericalstabilityofthelinearcode.Forlargethree-dimensionalprobl
19、ems,however,therestartedGMRESsolvercanbecomecomputationallytooexpensiveifthenumberofKrylovvectorsperrestartedcycleneededtopreventtheresidualfromstag-natingbecomeslargerthan30.Toovercomethisproblem,anal-ternativealgorithmhasbeenimplementedinhydlin,namely,theRecursiveProjectionMethod(RPM).19Themainobj
20、ectivesofthispaperareto1)summarizethemainfeaturesofthisalgorithmanditsimplementationinhydlinand2)comparethenumericalperfor-manceoftheRPMandGMRESstabilizediterations.SectionIIpresentsanoverviewofthesteadynonlinearandunsteadylinearequations,whereastheRPMsolverisdiscussedinSec.III.Finally,thenumericalp
21、erformanceoftheRPMandGMRESalgorithmsarecomparedinSec.IV,inwhichthetwomethodsareappliedtothe1766CAMPOBASSOANDGILESutteranalysisofatwo-dimensionalturbinesectionandofacivilenginefan.II.LinearAnalysisofFlowUnsteadinessThetime-dependentEulerandReynolds-averagedNSequationsinconservativeformareapproximated
22、onunstructuredhybridgrids,usinganedge-baseddiscretization.20Consideringthecomputationaldomainconsistingofallofthepassagesofabladerowleadstoasys-temofnonlinearordinarydifferentialequations(ODE)oftheformTdUdt+R(U,Ub,X,X)=0(1)wheretisthephysicaltime,TistheJacobianofthetransformationfromprimitivetoconse
23、rvativevariables,Uisthevectorofowvariables,Risthenodalresidual,andXandXprimitivearethevectorsofnodalcoordinatesandvelocities,respectively.ThevectorUbisusedtoenforcetime-dependentdisturbancesattheinowandout-owboundariessuchaswakesshedbyanupstreambladetheresidualvectorRdependsalsoonthenodalvelocitiesX
24、row,andbecausethegridcandeformconformingtothebladevibration.Therststageofthelinearanalysisrequiresthecomputationofthemeansteadyowaboutwhichthelinearizationoftheunsteadytermswillbecarriedout.Time-averagingthegoverningequation(1)yieldsR(U¯,X¯)=0(2)whereXisthevectorofnodalcoordinatesandthebar
25、overlin-ingUandXowU¯denotestime-averagedquantities.ThemeansteadyisobtainedbysolvingEq.(2)forasinglebladepassage,becausethemeanowiscircumferentiallyperiodic.Thebound-aryconditionstowhichthesystem(2)issubjectcanbeofthreetypes:inow/outow,periodicandinviscid/viscouswall.Thefar-eldboundariesarehandl
26、edthroughuxesthatincorporatepre-scribedowinformation,andthustheybecomepartoftheresidualvectorR.Atmatchingpairsofperiodicnodes,theperiodicitycon-ditionforlinearcascadesisenforcedbysettingtheowstateontheupperboundaryequaltothatonitslowercounterpart.InthecaseofannulardomainsbecauseoftheuseofCartesianco
27、ordinates,theve-locityvectorsontheupperboundaryareobtainedbyrotatingthoseonthelowerone.Combininguxresidualsatthetwoperiodicnodesinasuitablemannertomaintainperiodicity,thisboundarycondi-tioncanalsobeincludedinthedenitionoftheuxresidualvectorR.Thetreatmentofthewallboundariesintroducessomeadditionalter
28、msinEq.(2).Thesetermsarenotreportedhereforbrevity,andtheinterestedreaderisreferredtoRefs.17and21formoredetails.Thediscreteequation(2)isthensolvedusingRungeKuttatime-marchingacceleratedbyJacobipreconditioningandmultigrid.20Thesecondstageoftheanalysisisthelinearizationoftheun-steadyowequations.Assumin
29、gthattheowunsteadinessissmall,thetime-dependentvariablescanbewrittenasthesumofameansteadypartandasmall-amplitudeperturbation:X(t)=X¯+x(t),xX¯Ub(t)=U¯b+ub(t),ubU¯bU(t)=U¯+u(t),u
30、U¯wheretheperturbationsareoverlinedwithatildeLinearizingEq.(1)aboutthemeansteadyconditions(X¯symbol.,U¯)yieldsTdudt+Lu=f1+f2(3)wherethelinearizationmatrixLandthevectorsf1andf2aregivenbyL=Rf1=RR,x+Xx,f2=RubbBecauseoflinearity,thelin
31、earunsteadyoweldcanbedecom-posedintoasumofcomplexharmonicsoftheformuk(t)=elements(eiktukof),eachuofnewhichtheamplitudecanbecomputedandphaseseparately.oftheunsteadinessThecomplexkdeatfrequencyk.Analogousexpansionsholdforx(t),InsertingtheminEq.(3)andconsideringonlythexmode(t),andk=ub1(fort).s
32、implicityyieldstheharmonicequation(iT+L)u=f1+f2(4)whicharecomplexandcanbeviewedasthefrequency-domaincounterpartofEq.(3).Theright-hand-sidevectorsf1andf2givethesensitivityoftheresidualstoharmonicdeformationsofthemeshandtoincomingharmonicperturbationsrespectively.BasedonanideaofNiandSisto,22thelineare
33、quationsaresolvedwiththesamepseudo-time-marchingapproachadoptedforthesolutionofthenonlinearsteadyequations,thatis,byintroducingactitioustimederivativedu/dandtimemarchingthesolutionofthesystemoflinearODEs:dud=(iT+L)uf1f2untildu/dvanishes.Discretizingthistimederivativeleadstothelinearxed-pointiteratio
34、ndiscussedingreaterdetailinthefollow-ingsection.Intheuttercase,theobjectoftheanalysisistoassessthestabilityofaparticularstructuralmode.Thefrequencyandtheblademodeshapeareterminecalculatedwithaniteelementprogramandusedtode-f1,whichisnonzerothroughoutthecomputationaldomainbecausethegriddeformstheblade
35、,whereasconformingtotheharmonicvibrationoff2issettozero.Thephasebetweenthemotionofadjacentblades(interbladephaseangleorIBPA)isanadditionalparameteroftheanalysis.Itisgivenbyjindexjusuallycallednodaldiametercantake=any2j/integerNblades,andthevaluebe-tween0and(Nbladesrstfewones,asshown1)in,thoughRef.1.
36、theEquationcritical(4)valuescanarethenusuallybesolvedtheforasinglepassage,introducingthecomplexphaseshifteijbe-tweenthetwoperiodicboundaries.Theoutputofinterestisthenetenergyuxfromthestructuretotheworkinguidoveronecycleofvibration,denedbytheworksumintegralTvW=publade·dSdtSinwh
37、ichTvistheperiodofvibration,pandubladearethetime-dependentbladestaticpressureandvelocityrespectively,dSistheelementalbladesurfacewithoutwardnormal,andSistheover-allbladesurface.Apositivesignindicatesstabilityasenergyistransferredfromthestructuretotheuid,whereasanegativesignindicatestheoccurrenceofut
38、ter.Intheengineeringcommunity,thelogarithmicdecrementisamorefrequentlyusedstabilitypa-rameter,whichdependsontheratiobetweentheamplitudeVoftwoconsecutivecyclesofvibration.Itisdenedas=V(t+Tanditcanbeprovedthatv)/V(t),=W/2Inforcedresponse,theobjectoftheanalysisistodeterminetheunsteadyforcesactingontheb
39、ladeasaresultofanyoftheharmoniccomponents,intowhichtheincomingtime-periodicgustcanbede-composed.TheIBPAdependsonthegeometricpropertiesoftheproblem.Inthecaseofforcingcomingfromcircumferentiallyperi-odicwakes,thebladesandthewakescanhavedifferentpitches,andhencethereisadifferenceinthetimesatwhichneighb
40、oringwakesstrikeneighboringblades.ThereforetheIBPAofthefundamentalharmonicis2Nwakes/singleNblades.Againthelinearharmonicequation(4)canbesolvedforabladeboundaryconditions.Thevectorpassageusingcomplexperiodicf1iszerothroughoutthedomainbecausethemeshisstationary,andthevectorf2isnonzeroonlyattheinletoro
41、utletboundaries,wheretheharmonicperturbationisprescribed.Theunsteadyaerodynamicforceactingonthebladecanbecalculatedinapostprocessingstepforeachstructuralmodeusingtheunsteadypressureelddeterminedwiththeharmonicanalysis.CAMPOBASSOANDGILES1767Thelinearunsteadyanalysisiscompletedbyenforcingsuitablelinea
42、rizedboundaryconditions.Theinow,outow,and(complex)periodicboundaryconditionscanallbesymbolicallyincludedintoEq.(4),whereastheadditionaltermsasaresultofthewallboundaryconditionareomittedhereandreportedinRefs.17and21.Theimplementationofthefar-eldboundaryconditionsisbasedonone-dimensionalnonreectingbou
43、ndaryconditions.23Equation(4)arethensolvedusingthesamepreconditionedpseudo-time-marchingmethodasforthenonlinearequations.III.RPMStabilizationThelinearizedharmonicowequation(4)canbeviewedasasimplelinearsystemoftheformAx=b(5)withA=iT+L,b=f1k=(2×N+f2,andx=u.Thissystemhasdimen-sioneqsis5forinviscid
44、×owsN),andwhere6forNisturbulentthenumberowofanalysesgridnodes,usingNeqsaone-equationturbulencemodel,andthefactor2accountsforrealandimaginarypartofthecomplexoweld.ThoughEq.(4)iscomplex,hydlinhasbeenwrittenusingrealarithmetic,thatis,con-sideringrealvectorsofsizekratherthancomplexvectorsofsizek/2.
45、ThischoicehasbeenmadebecauseoferrorsoftenintroducedbyhighlyoptimizedFORTRANcompilerswhendealingwithcom-plexarithmetic.Thelinearcodeforthesolutionoftheseequationscanberegardedasthexed-pointiteration:xn+1=F(xn)=(IM1A)xn+M1b(6)inwhichM1isapreconditioningmatrixresultingfromtheRungeKuttatime-marchingalgo
46、rithm,theJacobipreconditioner,andonemultigridcycle.LinearstabilityanalysisofEq.(6)showsthatanecessaryconditionforitsconvergenceisthatalloftheeigenvaluesof(IM1A)liewithintheunitcirclecenteredattheorigininthecomplexplaneorequivalentlythatalloftheeigenvaluesofM1Alieintheunitdiskcenteredat(1,0).Formosta
47、eroelasticproblemsofpracticalinterest,thisconditionisfullled,andthelinearcodeconvergeswithoutdifculty.However,anexponentialgrowthoftheresidualhasbeenencounteredinsituationsinwhichthesteadyowcalculationitselffailedtoconvergetoasteadystatebutinsteadnishedinasmall-amplitudelimitcycle,relatedtosomephysi
48、calphenomenonsuchasseparationbubbles,cornerstalls,andvortexsheddingatablunttrailingedge.Thesolutionprocedureofthenon-linearsteadyequation(2)isnottimeaccurate,butitneverthelessreectssometime-dependentphysicalpropertiesoftheoweldbecauseofthepseudo-time-marchingstrategyassociatedwiththeRungeKuttaalgori
49、thm.Physicalsmall-amplitudelimitcyclesdonotpreventthesteadysolverfromconvergingtoanacceptablelevel,andtheireffectissometimesvisibleinsmalloscillationsoftheresid-ual.Howevertheseperiodicinstabilitiesresultinasmallnumberofcomplexconjugatepairsofeigenvaluesofthelinearizationma-trixM1Alyingoutsidetheuni
50、tcircle(outliers)andthuscausingtheexponentialgrowthoftheresidualofthelinearequations.ThisproblemhadbeenpreviouslysolvedbyimplementingarestartedGMRESalgorithminhydlin.17ThedrawbackofthisapproachisthattheGMREScodecanbecomecomputationallyveryexpensivewhendealingwithlargethree-dimensionalproblems.Thisis
51、be-causeeachKrylovvectorhasthesamesizeofthelinearoweldx,andtheextramemoryrequirementwithrespecttothestandardcodegrowslinearlywiththenumberofKrylovvectors(nKr)perrestartedcycle.FurthermorenKrcannotbechosenbelowacase-dependentthresholdtopreventtheresidualfromstagnating.Thememoryre-quirementoftheGMRESc
52、odeisalreadyabouttwicethatofthestandardcodeifnKrTostabilizethelinear=30.codereducingtheadditionalmemoryre-quirement,theRPMrstintroducedbyShroffandKellertostabi-lizeunstableiterativeproceduresfornonlinearparameterdependentproblems19hasbeenimplementedinhydlin.ThisalgorithmisbasedonQoftheRprojectionkof
53、Eq.(6)ontotheorthogonalsubspacesPandassociatedrespectivelywiththesubsetofmoutliersandthatoftheremaining(km)eigenvalueslyingintheunitdisk.AteachQontoisRPMsolvediteration,onlytheprojectionofEq.(6)ontothesubspacethetypicallywiththelow-dimensionalstandardxed-pointsubspaceiteration;Pisinsteadtheprojectio
54、nsolvedwithNewtonsmethod.DenotingbyZanorthonormalbasisofP,theorthogonalprojectorsPandQofthesubspacesPandQaredened,respectively,asP=ZZTandQ=IP.Eachtimethecalculationisdiverging,thebasisZisaugmentedwiththecurrentdominanteigenmode,andtheprojectorsPandQareupdatedac-cordingly.TheprojectionsfandgofEq.(6)o
55、ntoPandQaredened,respectively,asf=PF=P(IM1A)x+M1bg=QF=Q(IM1A)x+M1bandthestabilizediterationcanbewrittenasfollows:p+1=p+(Ifp)1f(p,q)p(7a)q+1=g(p,q)(7b)wherep=Px,q=Qx,fpPFxP,Fx=IM1AItiseasilyveriedthat(Ifp)1=ZIZT(IM1A)Z1ZT=ZIH1ZT(8)where(IH)isasmallmatrixofsizem,whoseinversionrequiresminimumcomputatio
56、naleffort.Thestabilityanalysisofthisalgo-rithmshowsthatitsspectralradiusissmallerthan1,thatis,thestabilizedRPMiterationisstable.19ThebasisZisupdateddirectlyfromtheiteratesqofthemodiediteration(7b),withoutcomputingJacobians.Thisisdonebymoni-toringtherateofconvergenceoftheiteratesq.Iftheresidualstarts
57、growing,itisarguedthatsomeoftheeigenvaluesofgqunitcircle.Thegenericcaseisthateitheran=isolatedQFxQlieoutsidetherealeigenvaluem+1oracomplexconjugatepair(m+1,m+2)causetheinstability.OnehastodecidewhichisthecaseanddeterminetheoneortwovectorstoappendtoZtomakeitspanthelargerinvari-antsubspaceofFxassociat
58、edwiththeaugmentedsetofeigenvalues1,2the,.vectors,m+1orq1,2,.,m+1,m+2matrixgq.Itcanbeshown19that=+1qareapoweriterationwiththeqappliedtothestartingvectorq0.Asymptoticallythesevectorswilltendtobeinthedominanteigenspaceofgq,providedthatq0hasanonzerocomponentinthisdirection.Iftheiterat
59、ionstartsdiverging,thetwodifferencevectorsqmostrecentpoweriterates)areusedtocomputethe,Gramq1(i.e.,Schmidtthefactorization24Dq,q1=DT(9)withTR2×2uppertriangularandDRk×2orthogonal.IfT1,1columnT2,2,theofDdominanteigenmodeofgqisreal,andonlytherstisincludedinZ.Otherwisetheinstabilityiscausedbyacomplexconjugatepair,andbothco
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 門診mdt管理制度
- 陜西保障房管理制度
- 非煤炭礦山管理制度
- 餐廳各崗位管理制度
- 餐廳廢品錢管理制度
- 黃金保險柜管理制度
- 重慶水利電力職業技術學院《飼料加工學》2023-2024學年第二學期期末試卷
- 貴州機電職業技術學院《健身健美副項》2023-2024學年第二學期期末試卷
- 湖南交通職業技術學院《金相顯微分析》2023-2024學年第二學期期末試卷
- 遼寧科技大學《影視色彩處理》2023-2024學年第二學期期末試卷
- 煤炭運輸合同
- 深圳市建筑小區及市政排水管網設計和施工技術指引
- 非遺項目計劃書模板范文
- 視頻監控維保項目投標方案(技術方案)
- T-HNNJ 0004-2021 水稻機械化收割技術規程
- 2024年黑龍江省哈爾濱市中考數學試卷(附答案)
- 獸醫實驗室質量管理手冊
- 體溫測量護理
- 全省公安特巡警安檢排爆實訓參考題庫多選題附有答案
- 國際經濟合作(-第二版)思考題和知識點運用習題答案
- 江蘇省常州市溧陽市2023-2024學年八年級下學期期末道德與法治試題(含答案解析)
評論
0/150
提交評論