湖州2018屆中考數學三模試題(含解析)_第1頁
湖州2018屆中考數學三模試題(含解析)_第2頁
湖州2018屆中考數學三模試題(含解析)_第3頁
湖州2018屆中考數學三模試題(含解析)_第4頁
已閱讀5頁,還剩26頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、浙江省湖州五中2015 屆中考數學三模試題一、選擇題(本題10 小題,每小題3 分,共 30 分)1給出四個數2, 0,其中為無理數的是()A 2BCD02下列運算正確的是()3253253233A( a ) =aB a +a =aC( a a)÷ a=aD a ÷a=13網上購物已成為現代人消費的新趨勢,2014 年天貓“ 11?11”購物狂歡節創造了一天571億元的支付寶成交額,其中571 億用科學記數法表示為()A5.71 ×10 2 B571×108C5.71 ×10 10D0.571 ×10 114一條開口向上的拋物線的頂點

2、坐標是(1,2),則它有()A最大值1B最大值 1C最小值2D最小值 25學校舉行紅歌賽,全校 21 個班級均組隊參賽所有參賽代表隊的成績互不相同,小敏在已知自己班級代表隊成績的情況下,要想知道本班代表隊是否進入前10 名,只需要知道所有參賽代表隊成績的()A平均數B眾數 C 中位數D方差6某幾何體的三視圖如圖所示,則它是()A球體 B 圓柱 C棱錐 D圓錐7如圖,先鋒村準備在坡角為 的山坡上栽樹,要求相鄰兩樹之間的水平距離為5 米,那么這兩樹在坡面上的距離AB為()A 5cos BC 5sin D8如圖,數軸的單位長度為1,如果 R,T 表示的數互為相反數,那么圖中的4 個點中,哪一個點表示

3、的數的絕對值最大()APB RCQDT9正方形 ABCD內,有一個內切圓 O電腦可設計程序:在正方形內可隨機產生一系列點,當點數很多時,電腦自動統計正方形內的點數a 個,O 內的點數 b 個(在正方形邊上和圓上的點不在統計中),根據用頻率估計概率的原理,可推得 的大小是()A B C D 10如圖,已知在矩形ABCD中, AB=2,BC=6,點 E 從點 D 出發,沿 DA方向以每秒1 個單位的速度向點A 運動,點F 從點 B出發,沿射線AB以每秒 3 個單位的速度運動,當點E 運動到點 A 時, E、 F 兩點停止運動連結BD,過點 E 作 EHBD,垂足為H,連結 EF,交 BD于點 G,

4、交 BC于點 M,連結 CF給出下列結論: CDE CBF; DBC=EFC; =;GH的值為定值;若 GM=3EG,則 tan FGB=上述結論中正確的個數為()A2B 3C4D5二、填空題(本題6 小題,每小題4 分,共24 分)11多項式a2b b 因式分解的結果是12函數 y= 2x 2+4x 中自變量x 的取值范圍是13用等腰直角三角板畫 AOB=45°,并將三角板沿點 M逆時針方向旋轉 22°,則三角板的斜邊與射線OB方向平移到如圖所示的虛線處后繞OA的夾角 為 度14如圖,在A BC中, DEBC, AD=2, DB=4,DE=3,則 BC的長為15定義:如果

5、二次函數y=ax2 +bx+c 的圖象經過點(1, 0),那么稱此二次函數圖象為“線性曲線” 例如:二次函數y=2x 2 5x 7 和y= x2+3x+4 的圖象都是“線性曲線”若“線性曲線”y=x2 mx+1 2k與坐標軸只有兩個公共點,則k 的值16已知線段 AB=6, C、 D 是 AB上兩點,且 AC=DB=1, P 是線段 CD上一動點,在 AB同側分別作等邊三角形 APE和等邊三角形 PBF,G為線段 EF 的中點,點 P 由點 C 移動到點 D 時, G點移動的路徑長度為三解答題(共66 分)17+() 1sin45 °+| 2013|18先化簡,再求值:,其中 a=1

6、9如圖, ?ABCD中, E 是邊 CD的中點,連結BE并延長,交AD的延長線于點F( 1)求證: EF=EB;( 2)連結 AC,交 BF于點 G,若 EG=2,求 EF 的長20為了解某市今年九年級學生學業考試體育成績,現從中隨機抽取部分學生的體育成績進行分組( A: 30 分; B:2927 分; C: 26 24 分; D:23 18 分; E:17 0 分)統計如下:根據上面提供的信息,回答下列問題:(1)這次調查中,抽取的學生人數為多少?并將條形統計圖補充完整;(2)如果把成績在 24 分以上(含 24 分)定為優秀,估計該市今年 6000 名九年級學生中,體育成績為優秀的學生人數

7、有多少人?21如圖,已知AB是O 的直徑,點C、 D 在O上,點 E 在O 外, EAC=D=60°( 1)求 ABC的度數;( 2)求證: AE是O的切線;( 3)當 BC=4時,求劣弧 AC的長22甲、乙兩地之間有一條筆直的公路 L,小明從甲地出發沿公路 L 步行前往乙地,同時小亮從乙地出發沿公路 L 騎自行車前往甲地, 小亮到達甲地停留一段時間, 原路原速返回, 追上小明后兩人一起步行到乙地設小明與甲地的距離為 y1 米,小亮與甲地的距離為 y2 米,小明與小亮之間的距離為s 米,小明行走的時間為x 分鐘 y1、y2 與x 之間的函數圖象如圖1, s與x 之間的函數圖象(部分)

8、如圖2( 1)求小亮從乙地到甲地過程中y2(米)與 x(分鐘)之間的函數關系式;( 2)求小亮從甲地返回到與小明相遇的過程中s(米)與 x(分鐘)之間的函數關系式;(3)在圖 2 中,補全整個過程中s(米)與x(分鐘)之間的函數圖象,并確定a 的值23在四邊形ABCD中,對角線AC、 BD相交于點O,將 COD繞點 O按逆時針方向旋轉得到C1OD1,旋轉角為 (0° 90°),連接AC1、BD1, AC1 與 BD1 交于點 P( 1)如圖 1,若四邊形 ABCD是正方形求證: AOC1 BOD1請直接寫出 AC1 與 BD1 的位置關系( 2)如圖 2,若四邊形 ABCD

9、是菱形, AC=5,BD=7,設 AC1=kBD1判斷 AC1 與 BD1 的位置關系,說明理由,并求出 k 的值(3)如圖 3,若四邊形ABCD是平行四邊形,AC=5, BD=10,連接 DD1,設 AC1=kBD1請直接22的值寫出 k 的值和 AC1 +( kDD1)24已知拋物線的頂點為(0, 4)且與 x 軸交于( 2, 0),( 2, 0)(1)求拋物線解析式;(2)如圖,將拋物線向右平移k 個單位,設平移后拋物線的頂點為D,與 x 軸的交點為A、B,與原拋物線的交點為P當直線OD與以 AB為直徑的圓相切于E 時,求此時k 的值;是否存在這樣的k 值,使得 ABP 的面積是 ABD

10、 面積的?如果存在求出k 值;若不存在,請說明理由2015 年浙江省湖州五中中考數學三模試卷參考答案與試題解析一、選擇題(本題10 小題,每小題3 分,共30 分)1給出四個數2, 0,其中為無理數的是()A 2BCD 0【考點】 無理數【分析】 根據無理數就是無限不循環小數解答即可【解答】 解: 2, 0 中,為無理數的是故選 B【點評】 本題主要考查了無理數的定義,其中初中范圍內學習的無理數有:方開不盡的數;以及像0.10100100 01,等有這樣規律的數 ,2 等;開2下列運算正確的是()3253253233A( a ) =aB a +a =aC( a a)÷ a=aD a

11、÷a=1【考點】 整式的混合運算【分析】 A、利用冪的乘方法則即可判定;B、利用同類項的定義即可判定;C、利用多項式除以單項式的法則計算即可判定;D、利用同底數的冪的除法法則計算即可【解答】 解: A、( a3)2=a6,故錯誤;3B、a 和2a 不是同類項,a325+a a,故錯誤;C、( a3 a)÷ a=a 2,故錯誤;330D、 a ÷a=a =1,正確故選 D【點評】 此題主要考查了整式的運算,對于相關的法則和定義一定要熟練3網上購物已成為現代人消費的新趨勢,2014 年天貓“ 11?11”購物狂歡節創造了一天571億元的支付寶成交額,其中571 億用科

12、學記數法表示為()A5.71 ×10 2 B571×10 8 C5.71 ×10 10 【考點】 科學記數法表示較大的數D0.571 ×10 11【分析】 科學記數法的表示形式為 a×10n 的形式,其中 1|a| 10, n 為整數確定值時,要看把原數變成 a 時,小數點移動了多少位, n 的絕對值與小數點移動的位數相同原數絕對值 1 時, n 是正數;當原數的絕對值 1 時, n 是負數n 的當【解答】 解: 571 億用科學記數法表示為故選: C5.71 ×10 10,【點評】 此題考查科學記數法的表示方法科學記數法的表示形式為

13、1|a| 10, n 為整數,表示時關鍵要正確確定a 的值以及n 的值a×10 n 的形式,其中4一條開口向上的拋物線的頂點坐標是(1,2),則它有()A最大值1B最大值 1C最小值2D最小值 2【考點】 二次函數的最值【分析】 根據開口向上頂點坐標可求得該函數的最值【解答】 解:拋物線的開口向上、頂點坐標是(1, 2),該函數有最小值,其最小值是2故選: C【點評】 本題主要考查二次函數的最值,求二次函數的最大(小)值有三種方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法5學校舉行紅歌賽,全校21 個班級均組隊參賽所有參賽代表隊的成績互不相同,小敏在已知自己班級代表隊成

14、績的情況下,要想知道本班代表隊是否進入前10 名,只需要知道所有參賽代表隊成績的()A平均數B眾數 C 中位數D方差【考點】 統計量的選擇【分析】 第 10 名位于 21 個成績的中間,根據中位數的意義解答即可【解答】 解:因為參賽班級為21 個,則第10 名為 21 的中間的名次,故要想知道自己是否進入前 10 名,只需要知道所有參賽者成績的中位數即可故選 C【點評】 本題重點考查了中位數的概念及應用, 了解中位數的意義是解答本題的關鍵, 屬于基礎題,難度不大6某幾何體的三視圖如圖所示,則它是()A球體 B 圓柱 C棱錐 D圓錐【考點】 由三視圖判斷幾何體【分析】球體的三視圖均為圓, 但這個

15、幾何體的俯視圖為圓而主視圖以及左視圖都是三角形,故可得出該幾何體為圓錐【解答】 解:本題中,球體的三視圖均為圓,而圓柱的正視圖和左視圖都是矩形,棱錐的俯視圖不可能是圓,只有圓錐符合條件,故選D【點評】 本題考查由三視圖確定幾何體的形狀,主要考查學生空間想象能力,可使用排除法進行解答7如圖,先鋒村準備在坡角為 的山坡上栽樹,要求相鄰兩樹之間的水平距離為5 米,那么這兩樹在坡面上的距離AB為()A 5cos BC 5sin D【考點】 解直角三角形的應用- 坡度坡角問題【專題】 壓軸題【分析】 利用所給的角的余弦值求解即可【解答】 解: BC=5 米, CBA= AB=故選:B【點評】 此題主要考

16、查學生對坡度、坡角的理解及運用8如圖,數軸的單位長度為1,如果 R,T 表示的數互為相反數,那么圖中的4 個點中,哪一個點表示的數的絕對值最大()APB RCQDT【考點】 絕對值;數軸【分析】 根據相反數的定義確定出RT的中點為原點,然后根據絕對值的定義解答即可【解答】 解:如圖,R, T 表示的數互為相反數,線段 RT的中點 O為原點,點 P 的絕對值最大故選 A【點評】 本題考查了絕對值的定義, 相反數的定義, 根據相反數確定出原點的位置是解題的關鍵9正方形ABCD內,有一個內切圓O電腦可設計程序:在正方形內可隨機產生一系列點,當點數很多時,電腦自動統計正方形內的點數 a 個,O 內的點

17、數 b 個(在正方形邊上和圓上的點不在統計中),根據用頻率估計概率的原理,可推得 的大小是( )A B C D 【考點】 利用頻率估計概率【分析】 根據圓的面積與正方形的面積的比等于落在相應位置的點數的比列式求解即可【解答】 解:設圓的半徑為r ,則正方形的邊長為 2r ,根據題意得: ,故 ,故選 B【點評】 本題考查了利用頻率估計概率的知識,解題的關鍵是能夠了解落在圓內的概率約等于圓與正方形的面積的比,難度不大10如圖,已知在矩形 ABCD中, AB=2,BC=6,點 E 從點 D 出發,沿 DA方向以每秒1 個單位的速度向點 A 運動,點 F 從點 B出發,沿射線AB以每秒 3 個單位的

18、速度運動,當點E 運動到點 A 時, E、 F 兩點停止運動連結 BD,過點 E 作 EHBD,垂足為 H,連結 EF,交 BD于點 G,交 BC于點 M,連結 CF給出下列結論: CDE CBF; DBC=EFC; = ;GH的值為定值;若 GM=3EG,則 tan FGB=上述結論中正確的個數為()A2B 3C4D5【考點】 相似形綜合題【專題】 壓軸題;數形結合【分析】 根據= 可以判斷正確;根據 DCB ECF 可以判斷正確;根據EDC EHG得,由 AB=DC可知錯誤; 根據 DEH DBA 求出 EH=,HG=故正確;根據已知條件可以證明 AEF是等腰三角形,列出方程 6t=2+3

19、t,求出 t ,得到 DE=1,根據 tan BGF=tanDCE=,故錯誤【解答】 解:作 CNBD,連接 AC四邊形 ABCD是矩形, ADBC, AB=DC, CDA=DCB=DAB=ABC=90°, CDE=FBC=90° CDE CBF,故正確, DCE=BCF, DCE+BCE=90°, BCE+BCF=90°, ECD=90°, DCB=ECF DCB ECF, DBC=EFC,故正確, CDB=CEF, CDB+DCN=90°, DCN+NCB=90°, DCB=NCB=CEF,CNBD,EHDB,CNEH,

20、 NCE=CEH, ECB=HEG,ADBC, DEC=ECB, DEC=HEG, EDC=EHG=90°, EDC EHG,AB=DC,故錯誤, AD=BC=6, AB=2,BD=2, EDH=ADB, EHD=DAB, DEH DBA,EH=,HG=,故正確BMED, MG=3EG, BM=3t,BF=3t, MB=BF, MBF=90° MFB=45°, EAF=90°, AEF=AFE=45°, AE=AF, 6 t=2+3t t=1 , DE=1, FGB=EGH=DCE,tan BGF=tanDCE=,故錯誤綜上所述正確故選 B【點

21、評】 本題考查了相似三角形的判定和性質、矩形的性質、 等腰三角形的性質和判定、三角函數等知識, 綜合性較強, 利用同角的余角相等證明角相等是解題的關鍵, 本題還用到方程的思想解決線段的長度問題二、填空題(本題6 小題,每小題4 分,共 24 分)11多項式a2b b 因式分解的結果是b( a+1)( a 1)【考點】 提公因式法與公式法的綜合運用【專題】 計算題【分析】 原式提取b,再利用平方差公式分解即可2【解答】 解:原式 =b( a 1) =b( a+1)( a 1),【點評】 此題考查了提公因式法與公式法的綜合運用, 熟練掌握因式分解的方法是解本題的關鍵12函數 y= 2x 2+4x

22、中自變量x 的取值范圍是全體實數【考點】 二次函數的定義【分析】 根據當函數表達式是整式時,自變量可取全體實數,可得答案【解答】 解:函數表達式是整式,函數自變量的取值范圍是全體實數故答案為:全體實數【點評】 本題主要考查的是函數自變量的取值范圍, 明確函數表達式是整式時, 自變量可取全體實數是解題的關鍵13用等腰直角三角板畫 AOB=45°,并將三角板沿點 M逆時針方向旋轉 22°,則三角板的斜邊與射線OB方向平移到如圖所示的虛線處后繞OA的夾角 為 22 度【考點】 平移的性質;同位角、內錯角、同旁內角【分析】 由平移的性質知, AOSM,再由平行線的性質可得WMS=O

23、WM,即可得答案【解答】 解:由平移的性質知, AOSM,故 WMS=OWM=22°;故答案為: 22【點評】 本題利用了兩直線平行,內錯角相等,及平移的基本性質:平移不改變圖形的形狀和大小; 經過平移, 對應點所連的線段平行且相等,對應線段平行且相等,對應角相等14如圖,在 ABC 中, DEBC, AD=2, DB=4,DE=3,則 BC的長為9【考點】 相似三角形的判定與性質【分析】 根據相似三角形的判定定理可證 ADE ABC, 根據相似三角形的性質即可得到結論【解答】 解: AD=2, DB=4, AB=6,DEBC, ADE ABC, , , BC=9,故答案為: 9【點

24、評】 本題考查了相似三角形的判定和性質,找出圖中的比例關系是解題的關鍵15定義:如果二次函數 y=ax2 +bx+c 的圖象經過點( 1, 0),那么稱此二次函數圖象為“線性曲線” 例如:二次函數 y=2x 2 5x 7 和 y= x2+3x+4 的圖象都是“線性曲線” 若“線性曲線” y=x 2 mx+1 2k 與坐標軸只有兩個公共點,則【考點】 拋物線與x 軸的交點【專題】 新定義k 的值0 或【分析】 拋物線與y 軸一定有一個公共點,根據新定義得到拋物線y=x mx+12k 經過點( 1, 0),則分類討論:若拋物線過原點,則1 2k=0,可解得 k=;若點( 1, 0)為頂點時,利用拋

25、物線對稱軸方程易得m= 2,再根據二次函數圖象上點的坐標特征得到1+m+12k=0 ,然后把m= 2 代入可計算出對應k 的值【解答】 解:因為拋物線y=x2mx+1 2k 經過點( 1, 0),所以當拋物線過原點時,拋物線解得 k= ;y=x2 mx+1 2k與坐標軸只有兩個公共點,此時1 2k=0,當點(1, 0)為頂點時,拋物線y=x2 mx+1 2k與坐標軸只有兩個公共點,則=1,解得m= 2,把( 1, 0)代入 y=x2 mx+12k 得 1+m+1 2k=0,所以 2 2 2k=0 ,解得 k=0,綜上所述, k 的值為 0 或故答案為0或【點評】本題考查了拋物線與x 軸的交點:

26、 把求二次函數y=ax2+bx+c( a,b,c 是常數, a0)與 x 軸的交點坐標問題轉化為解關于x 的一元二次方程也考查了二次函數的性質16已知線段 AB=6, C、 D 是 AB上兩點,且 AC=DB=1, P 是線段 CD上一動點,在 AB同側分別作等邊三角形 APE和等邊三角形 PBF,G為線段 EF 的中點,點 P 由點 C 移動到點 D 時, G點移動的路徑長度為2【考點】 梯形中位線定理;等邊三角形的性質【專題】 壓軸題;動點型【分析】 分別延長AE、 BF 交于點 H,易證四邊形EPFH為平行四邊形,得出G為 PH中點,則 G的運行軌跡為三角形 HCD的中位線 MN再求出

27、CD的長,運用中位線的性質求出MN的長度即可【解答】 解:如圖,分別延長 AE、 BF 交于點 H A=FPB=60°,AHPF, B=EPA=60°,BHPE,四邊形 EPFH為平行四邊形, EF 與 HP互相平分G為 EF的中點,G為 PH中點,即在 P 的運動過程中, G始終為 PH的中點,所以 G的運行軌跡為三角形 HCD的中位線MNCD=6 1 1=4,MN=2,即 G的移動路徑長為2【點評】 本題考查了等腰三角形及中位線的性質,以及動點問題,是中考的熱點三解答題(共66 分)17+() 1sin45 °+| 2013|【考點】 實數的運算;負整數指數冪

28、;特殊角的三角函數值【專題】 計算題【分析】 原式第一項利用平方根定義計算,第二項利用負指數冪法則計算,第三項利用特殊角的三角函數值計算,最后一項利用絕對值的代數意義化簡,計算即可得到結果【解答】 解:原式 =3+2 1+2013=2017【點評】 此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵18先化簡,再求值:,其中 a=【考點】 分式的化簡求值;二次根式的化簡求值【專題】 計算題;壓軸題【分析】 將括號里先通分,除法化為乘法,化簡,再代值計算【解答】 解:原式 =()÷ a=×=,當 a=+1 時,原式=【點評】 本題考查了分式的化簡代值計算,二次根式的化簡關鍵

29、是按照分式混合運算的步驟解題19如圖, ?ABCD中, E 是邊 CD的中點,連結BE并延長,交AD的延長線于點F( 1)求證: EF=EB;( 2)連結 AC,交 BF于點 G,若 EG=2,求 EF 的長【考點】 相似三角形的判定與性質;全等三角形的判定與性質;平行四邊形的性質【分析】 (1)根據平行四邊形的性質得出 ABDF,推出 ABE=F,根據全等三角形的判定定理推出 CBE DFE,然后由全等三角形的性質即可得到結論;(2)根據相似三角形的性質得到,求得 BG=2EG=4,得到 BE=6,即可得到結論【解答】 (1)證明:四邊形ABCD是平行四邊形,CBDF, CBE=F,點 E

30、是 AD的中點, AE=DE,在 CBE和 DFE中 CBE DFE, BE=EF;( 2) ABCD, CEG ABG, BG=2EG=4, BE=6, EF=BG=6【點評】 本題考查了全等三角形的判定和性質,質,解此題的關鍵是推出 CBE=F平行四邊形的性質,相似三角形的判定和性20為了解某市今年九年級學生學業考試體育成績,現從中隨機抽取部分學生的體育成績進行分組( A: 30 分; B:2927 分; C: 26 24 分; D:23 18 分; E:17 0 分)統計如下:根據上面提供的信息,回答下列問題:(1)這次調查中,抽取的學生人數為多少?并將條形統計圖補充完整;(2)如果把成

31、績在 24 分以上(含 24 分)定為優秀,估計該市今年 6000 名九年級學生中,體育成績為優秀的學生人數有多少人?【考點】 條形統計圖;用樣本估計總體;扇形統計圖【分析】 ( 1)根據 A 組的人數和所占的百分比求出總人數,再用總人數減去其他組的人數,即可求出 B 組的人數,從而補全統計圖;( 2)先求出在這次調查中體育成績為優秀的學生所占的百分比,再乘以總人數,即可得出答案【解答】 解:( 1)根據題意得:=200(人),則 B 組的人數是: 200 7040 3010=50(人),補圖如下:( 2)根據題意得:× 6000=4800(人),答:體育成績為優秀的學生人數有480

32、0 人【點評】 本題考查的是條形統計圖和扇形統計圖的綜合運用;利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題21如圖,已知AB是O 的直徑,點C、 D 在O上,點 E 在O 外, EAC=D=60°( 1)求 ABC的度數;( 2)求證: AE是O的切線;( 3)當 BC=4時,求劣弧 AC的長【考點】 切線的判定;圓周角定理;弧長的計算【分析】 (1)由圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得ABC的度數;(2)由 AB是O 的直徑,根據半圓(或直徑)所對的圓周角是直角,即可得ACB=90°,又由 BAC=30&

33、#176;,易求得 BAE=90°,則可得AE是O 的切線;( 3)首先連接 OC,易得 OBC是等邊三角形,則可得 AOC=120°,由弧長公式,即可求得劣弧 AC的長【解答】 解:( 1) ABC與D 都是弧 AC所對的圓周角, ABC=D=60°;( 2) AB 是O 的直徑, ACB=90° BAC=30°, BAE=BAC+EAC=30°+60°=90°,即 BAAE,AE 是O的切線;( 3)如圖,連接 OC, ABC=60°, AOC=120°,劣弧 AC的長為【點評】 此題考查了

34、切線的判定、圓周角定理以及弧長公式等知識此題難度適中,注意數形結合思想的應用,注意輔助線的作法22甲、乙兩地之間有一條筆直的公路 L,小明從甲地出發沿公路 L 步行前往乙地,同時小亮從乙地出發沿公路 L 騎自行車前往甲地, 小亮到達甲地停留一段時間, 原路原速返回, 追上小明后兩人一起步行到乙地設小明與甲地的距離為 y1 米,小亮與甲地的距離為 y2 米,小明與小亮之間的距離為s 米,小明行走的時間為x 分鐘 y1、y2 與x 之間的函數圖象如圖1, s與x 之間的函數圖象(部分)如圖2( 1)求小亮從乙地到甲地過程中y2(米)與 x(分鐘)之間的函數關系式;( 2)求小亮從甲地返回到與小明相

35、遇的過程中s(米)與 x(分鐘)之間的函數關系式;(3)在圖 2 中,補全整個過程中s(米)與x(分鐘)之間的函數圖象,并確定a 的值【考點】 一次函數的應用【專題】 壓軸題【分析】( 1)設小亮從乙地到甲地過程中y(2 米)與 x(分鐘)之間的函數關系式為y2=k2x+b,由待定系數法根據圖象就可以求出解析式;(2)先根據函數圖象求出甲乙的速度,然后與追擊問題就可以求出小亮追上小明的時間,就可以求出小亮從甲地返回到與小明相遇的過程中s(米) 與 x(分鐘)之間的函數關系式;(3)先根據相遇問題建立方程就可以求出a 值, 10 分鐘甲、乙走的路程就是相距的距離,14 分鐘小明走的路程和小亮追到

36、小明時的時間就可以補充完圖象【解答】 解:( 1)設小亮從乙地到甲地過程中y2(米)與x(分鐘)之間的函數關系式為y2=k2 x+b,由圖象,得,解得:,y2= 200x+2000;(2)由題意,得小明的速度為: 2000÷40=50 米 / 分,小亮的速度為: 2000÷10=200 米 / 分,小亮從甲地追上小明的時間為( 24×50)÷( 200 50) =8 分鐘, 24 分鐘時兩人的距離為: S=24×50=1200, 32 分鐘時 S=0,設 S 與 x 之間的函數關系式為: S=kx+b1,由題意,得,解得:, S= 150x+4

37、800(24x32);(3)由題意,得a=2000÷( 200+50 )=8 分鐘,當 x=24 時, S=1200,設經過 x 分鐘追上小明,則200x 50x=1200,解得 x=8,此時的總時間就是24+8=32 分鐘故描出相應的點就可以補全圖象如圖:【點評】 本題是一道一次函數的綜合試題,考查了待定系數法求一次函數的解析式的運用,追擊問題與相遇問題在實際問題中的運用, 描點法畫函數圖象的運用, 解答時靈活運用路程、速度、時間之間的數量關系是關鍵23在四邊形ABCD中,對角線AC、 BD相交于點O,將 COD繞點 O按逆時針方向旋轉得到C1OD1,旋轉角為 (0° 9

38、0°),連接AC1、BD1, AC1 與 BD1 交于點 P( 1)如圖 1,若四邊形 ABCD是正方形求證: AOC1 BOD1請直接寫出 AC1 與 BD1 的位置關系( 2)如圖 2,若四邊形 ABCD是菱形, AC=5,BD=7,設 AC1=kBD1判斷 AC1 與 BD1 的位置關系,說明理由,并求出 k 的值(3)如圖 3,若四邊形ABCD是平行四邊形, AC=5, BD=10,連接 DD1,設 AC1=kBD1請直接22的值寫出 k 的值和 AC +( kDD)11【考點】 四邊形綜合題; 全等三角形的判定與性質;旋轉的性質; 相似三角形的判定與性質【專題】 綜合題【分

39、析】( 1)如圖 1,根據正方形的性質得 OC=OA=OD=OB,ACBD,則 AOB=COD=90°,再根據旋轉的性質得 OC1=OC, OD1=OD, COC1=DOD1,則 OC1=OD1,利用等角的補角相等得AOC1=BOD1,然后根據“ SAS”可證明 AOC 1 BOD1;由 AOB=90°,則 OAB+ABP+OBD 1=90°,所以 OAB+ABP+OAC 1=90°,則 APB=90°所以 AC1BD1;( 2)如圖 2,根據菱形的性質得 OC=OA=AC, OD=OB=BD,ACBD,則 AOB=COD=90°,再根據旋轉的性質得 OC1=OC, OD1=OD, COC1=DOD1,則 OC1=OA, OD1=OB,利用等角的補角相等得AOC1=BOD1,加上,根據相似三角形的判定方法得到AOC1 BOD1,得到 OAC1=OBD1,由 AOB=90°得 OAB+ABP+OBD 1=90°, 則 OA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論