




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、word.知識點1:一元二次方程的根本概念1一元二次方程3x2+5x-2=0的常數項是-2.2一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2.3一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7.4把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.知識點2:直角坐標系與點的位置1直角坐標系中,點A3,0在y軸上。2直角坐標系中,x軸上的任意點的橫坐標為0.3直角坐標系中,點A1,1在第一象限.4直角坐標系中,點A-2,3在第四象限.5直角坐標系中,點A-2,1在第二象限.知識點3:自變量的值求函數值1當x=2時,函數y=的值為1.2當x=3時,函數y=
2、的值為1.3當x=-1時,函數y=的值為1.知識點4:根本函數的概念及性質1函數y=-8x是一次函數.2函數y=4x+1是正比例函數.3函數是反比例函數.4拋物線y=-3(x-2)2-5的開口向下.5拋物線y=4(x-3)2-10的對稱軸是x=3.6拋物線的頂點坐標是(1,2).7反比例函數的圖象在第一、三象限.知識點5:數據的平均數中位數與眾數1數據13,10,12,8,7的平均數是10.2數據3,4,2,4,4的眾數是4.3數據1,2,3,4,5的中位數是3.知識點6:特殊三角函數值1cos30°= . 2sin260°+ cos260°= 1.32sin30
3、°+ tan45°= 2.4tan45°= 1.5cos60°+ sin30°= 1. 知識點7:圓的根本性質1半圓或直徑所對的圓周角是直角.2任意一個三角形一定有一個外接圓.3在同一平面內,到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓.4在同圓或等圓中,相等的圓心角所對的弧相等.5同弧所對的圓周角等于圓心角的一半.6同圓或等圓的半徑相等.7過三個點一定可以作一個圓.8長度相等的兩條弧是等弧.9在同圓或等圓中,相等的圓心角所對的弧相等.10經過圓心平分弦的直徑垂直于弦。知識點8:直線與圓的位置關系1直線與圓有唯一公共點時,叫做
4、直線與圓相切.2三角形的外接圓的圓心叫做三角形的外心.3弦切角等于所夾的弧所對的圓心角.4三角形的內切圓的圓心叫做三角形的內心.5垂直于半徑的直線必為圓的切線.6過半徑的外端點并且垂直于半徑的直線是圓的切線.7垂直于半徑的直線是圓的切線.8圓的切線垂直于過切點的半徑.知識點9:圓與圓的位置關系1兩個圓有且只有一個公共點時,叫做這兩個圓外切.2相交兩圓的連心線垂直平分公共弦.3兩個圓有兩個公共點時,叫做這兩個圓相交.4兩個圓內切時,這兩個圓的公切線只有一條.5相切兩圓的連心線必過切點.知識點10:正多邊形根本性質1正六邊形的中心角為60°.2矩形是正多邊形.3正多邊形都是軸對稱圖形.4
5、正多邊形都是中心對稱圖形.知識點11:一元二次方程的解1方程的根為 .Ax=2 Bx=-2 Cx1=2,x2=-2 Dx=42方程x2-1=0的兩根為 .Ax=1 Bx=-1 Cx1=1,x2=-1 Dx=23方程x-3x+4=0的兩根為 .1=-3,x21=-3,x21=3,x21=3,x2=-44方程x(x-2)=0的兩根為 .Ax1=0,x2=2 Bx1=1,x2=2 Cx1=0,x2=-2 Dx1=1,x2=-25方程x2-9=0的兩根為 .Ax=3 Bx=-3 Cx1=3,x2=-3 Dx1=+,x2=-知識點12:方程解的情況及換元法1一元二次方程的根的情況是 .2不解方程,判別方
6、程3x2-5x+3=0的根的情況是 .A.有兩個相等的實數根 B. 有兩個不相等的實數根 C.只有一個實數根 D. 沒有實數根3不解方程,判別方程3x2+4x+2=0的根的情況是 .A.有兩個相等的實數根 B. 有兩個不相等的實數根 C.只有一個實數根 D. 沒有實數根4不解方程,判別方程4x2+4x-1=0的根的情況是 .A.有兩個相等的實數根 B.有兩個不相等的實數根 5不解方程,判別方程5x2-7x+5=0的根的情況是 .A.有兩個相等的實數根 B. 有兩個不相等的實數根 C.只有一個實數根 D. 沒有實數根6不解方程,判別方程5x2+7x=-5的根的情況是 .A.有兩個相等的實數根 B
7、. 有兩個不相等的實數根 C.只有一個實數根 D. 沒有實數根7不解方程,判別方程x2+4x+2=0的根的情況是 .A.有兩個相等的實數根 B. 有兩個不相等的實數根 C.只有一個實數根 D. 沒有實數根8. 不解方程,判斷方程5y+1=2y的根的情況是 A.有兩個相等的實數根 B. 有兩個不相等的實數根C.只有一個實數根 D. 沒有實數根9. 用 換 元 法 解方 程 時, 令 = y,于是原方程變為 .A.y-5y+4=0 B.y-5y-4=0 C.y-4y-5=0 D.y+4y-5=010. 用換元法解方程時,令= y ,于是原方程變為 .y-4y+1=0 y-4y-1=0 y-4y-1
8、=0 D. -5y-4y-1=011. 用換元法解方程()2-5()+6=0時,設=y,那么原方程化為關于y的方程是 .A.y2+5y+6=0 B.y2-5y+6=0 C.y2+5y-6=0 D.y2-5y-6=0知識點13:自變量的取值范圍1函數中,自變量x的取值范圍是 . -22函數y=的自變量的取值范圍是 .A.x>3 B. x3 C. x3 D. x為任意實數3函數y=的自變量的取值范圍是 . -1 B. x>-1 C. x1 D. x-14函數y=的自變量的取值范圍是 .5函數y=的自變量的取值范圍是 .知識點14:根本函數的概念1以下函數中,正比例函數是 . A. y=
9、-8x B.y=-8x+1 C.y=8x2+1 D.y=2以下函數中,反比例函數是 .A. y=8x2 B.y=8x+1 C.y=-8x D.y=-3以下函數:y=8x2;y=8x+1;y=-8x;y=-.其中,一次函數有 個 .知識點15:圓的根本性質1如圖,四邊形ABCD內接于O,C=80°,那么A的度數是 . A. 50° B. 80° C. 90° D. 100°2:如圖,O中, 圓周角BAD=50°,那么圓周角BCD的度數是 .°°°°3:如圖,O中, 圓心角BOD=100°
10、,那么圓周角BCD的度數是 .°°°°4:如圖,四邊形ABCD內接于O,那么以下結論中正確的選項是 .A.A+C=180° B.A+C=90°C.A+B=180° D.A+B=905半徑為5cm的圓中,有一條長為6cm的弦,那么圓心到此弦的距離為 . A.3cm B.4cm C.5cm 6:如圖,圓周角BAD=50°,那么圓心角BOD的度數是 . °°°7:如圖,O中,弧AB的度數為100°,那么圓周角ACB的度數是 .°°°8. :如圖,O中,
11、 圓周角BCD=130°,那么圓心角BOD的度數是 .°°°°9. 在O中,弦AB的長為8cm,圓心O到AB的距離為3cm,那么O的半徑為 cm.A.3 B.4 C.5 D. 1010. :如圖,O中,弧AB的度數為100°,那么圓周角ACB的度數是 .°°°°12在半徑為5cm的圓中,有一條弦長為6cm,那么圓心到此弦的距離為 .A. 3cm B. 4 cm C.5 cm D.6 cm知識點16:點、直線和圓的位置關系1O的半徑為10,如果一條直線和圓心O的距離為10,那么這條直線和這個圓的位
12、置關系為 .2圓的半徑為6.5cm,直線l和圓心的距離為7cm,那么這條直線和這個圓的位置關系是 .A.相切 B.相離 C.相交 D. 相離或相交3圓O的半徑為6.5cm,PO=6cm,那么點P和這個圓的位置關系是 4圓的半徑為6.5cm,直線l和圓心的距離為4.5cm,那么這條直線和這個圓的公共點的個數是 . 5一個圓的周長為a cm,面積為a cm2,如果一條直線到圓心的距離為cm,那么這條直線和這個圓的位置關系是 .A.相切 B.相離 C.相交 D. 不能確定6圓的半徑為6.5cm,直線l和圓心的距離為6cm,那么這條直線和這個圓的位置關系是 .7. 圓的半徑為6.5cm,直線l和圓心的
13、距離為4cm,那么這條直線和這個圓的位置關系是 .A.相切 B.相離 C.相交 D. 相離或相交8. O的半徑為7cm,PO=14cm,那么PO的中點和這個圓的位置關系是 .知識點17:圓與圓的位置關系1O1和O2的半徑分別為3cm和4cm,假設O1O2=10cm,那么這兩圓的位置關系是 .A. 外離 B. 外切 C. 相交 D. 內切2O1、O2的半徑分別為3cm和4cm,假設O1O2=9cm,那么這兩個圓的位置關系是 .A.內切 B. 外切 C. 相交 D. 外離3O1、O2的半徑分別為3cm和5cm,假設O1O2=1cm,那么這兩個圓的位置關系是 .A.外切 B.相交 C. 內切 D.
14、內含4O1、O2的半徑分別為3cm和4cm,假設O1O2=7cm,那么這兩個圓的位置關系是 .5O1、O2的半徑分別為3cm和4cm,兩圓的一條外公切線長4,那么兩圓的位置關系是 .A.外切 B. 內切 C.內含 D. 相交6O1、O2的半徑分別為2cm和6cm,假設O1O2=6cm,那么這兩個圓的位置關系是 .A.外切 B.相交 C. 內切 D. 內含知識點18:公切線問題1如果兩圓外離,那么公切線的條數為 .2如果兩圓外切,它們的公切線的條數為 .A. 1條 B. 3如果兩圓相交,那么它們的公切線的條數為 .A. 1條 B. 4如果兩圓內切,它們的公切線的條數為 .A. 1條 B. 5.
15、O1、O2的半徑分別為3cm和4cm,假設O1O2=9cm,那么這兩個圓的公切線有 條.A.1條 B. 2條 C. 3條 D. 4條6O1、O2的半徑分別為3cm和4cm,假設O1O2=7cm,那么這兩個圓的公切線有 條.A.1條 B. 2條 C. 3條 D. 4條知識點19:正多邊形和圓1如果O的周長為10cm,那么它的半徑為 .A. 5cm B C.10cm cm2正三角形外接圓的半徑為2,那么它內切圓的半徑為 .A. 2 B. C.1 D.3,正方形的邊長為2,那么這個正方形內切圓的半徑為 .A. 2 B. 1 C. D.4扇形的面積為,半徑為2,那么這個扇形的圓心角為= .°
16、°° D. 120°5,正六邊形的半徑為R,那么這個正六邊形的邊長為 .A.R B.R C.R D.6圓的周長為C,那么這個圓的面積S= .A. B. C. D.7正三角形內切圓與外接圓的半徑之比為 .A.1:2 B.1: C.:2 D.1:8. 圓的周長為C,那么這個圓的半徑R= . B. C. D. 9.,正方形的邊長為2,那么這個正方形外接圓的半徑為 .10,正三角形的半徑為3,那么這個正三角形的邊長為 .A. 3 B. 知識點20:函數圖像問題1:關于x的一元二次方程的一個根為,且二次函數的對稱軸是直線x=2,那么拋物線的頂點坐標是 .A. (2,-3)
17、B. (2,1) C. (2,3) D. (3,2)2假設拋物線的解析式為y=2(x-3)2+2,那么它的頂點坐標是 .A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 3一次函數y=x+1的圖象在 . A.第一、二、三象限 B. 第一、三、四象限 C. 第一、二、四象限 D. 第二、三、四象限4函數y=2x+1的圖象不經過 . A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限5反比例函數y=的圖象在 . A.第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限6反比例函數y=-的圖象不經過 . A第一、二象限 B. 第三、四象限 C. 第
18、一、三象限 D. 第二、四象限7假設拋物線的解析式為y=2(x-3)2+2,那么它的頂點坐標是 .A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2)8一次函數y=-x+1的圖象在 . A第一、二、三象限 B. 第一、三、四象限 C. 第一、二、四象限 D. 第二、三、四象限9一次函數y=-2x+1的圖象經過 . A第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限10. 拋物線y=ax2+bx+ca>0且a、b、c為常數的對稱軸為x=1,且函數圖象上有三點A(-1,y1)、B(,y2)、C(2,y3),那么y1、y2、y3的大小關系是
19、.3<y1<y2 B. y2<y3<y1 C. y3<y2<y1 D. y1<y3<y2知識點21:分式的化簡與求值1計算:的正確結果為 .A. B. C. D. 2.計算:1-的正確結果為 .A. B. C. - D. -3.計算:的正確結果為 .A.x B. C.- D. -4.計算:的正確結果為 .A.1 B.x+1 C. D.5計算的正確結果是 .A. C. 的正確結果是 .A. B. - C. 7.計算:的正確結果為 . A.x-y B.x+y C8.計算:的正確結果為 .A.1 B. C.-1 D.的正確結果是 .A. B. 知識點2
20、2:二次根式的化簡與求值1. xy>0,化簡二次根式的正確結果為 . A. B. 的結果是 .A. C. D.3.假設a<b,化簡二次根式的結果是 .A. C. 4.假設a<b,化簡二次根式的結果是 .A. C. D. 5. 化簡二次根式的結果是 .A. B. C. D.6假設a<b,化簡二次根式的結果是 .A. C. D.7xy<0,那么化簡后的結果是 .A. C. D.8假設a<b,化簡二次根式的結果是 .A. C. D.9假設b>a,化簡二次根式a2的結果是 .A. B. C. D.10化簡二次根式的結果是 . A. C. D. 11假設ab&l
21、t;0,化簡二次根式的結果是 .A.bb C. b D. -b知識點23:方程的根1當m= 時,分式方程會產生增根.2分式方程的解為 .A.x=-2或x=0 B.x=-2 C.x3用換元法解方程,設=y,那么原方程化為關于y的方程 .A.y+2y-5=0 B.y+2y-7=0 C.y+2y-3=0 D.y+2y-9=04方程(a-1)x2+2ax+a2+5=0有一個根是x=-3,那么a的值為 .5關于x的方程有增根,那么實數a為 .A.a=1 B.a=-1 C.a=±1 D.a= 26二次項系數為1的一元二次方程的兩個根分別為-、-,那么這個方程是 .A.x+2x-1=0 B.x+2
22、x+1=0C.x-2x-1=0 D.x-2x+1=07關于x的一元二次方程(k-3)x2-2kx+k+1=0有兩個不相等的實數根,那么k的取值范圍是 .A.k>- B.k>-且k3 C.k<- D.k>且k3知識點24:求點的坐標1點P的坐標為(2,2),PQx軸,且PQ=2,那么Q點的坐標是 .A.(4,2) B.(0,2)或(4,2) C.(0,2) D.(2,0)或(2,4)2如果點P到x軸的距離為3,到y軸的距離為4,且點P在第四象限內,那么P點的坐標為 .A.(3,-4) B.(-3,4) C.4,-3) D.(-4,3) 3過點P(1,-2)作x軸的平行線l
23、1,過點Q(-4,3)作y軸的平行線l2, l1、l2相交于點A,那么點A的坐標是 .A.(1,3) B.(-4,-2) C.(3,1) D.(-2,-4)知識點25:根本函數圖像與性質1假設點A(-1,y1)、B(-,y2)、C(,y3)在反比例函數y=(k<0)的圖象上,那么以下各式中不正確的選項是 .3<y1<y22+y31+y31y3y2<0 2在反比例函數y=的圖象上有兩點A(x1,y1)、B(x2,y2),假設x2<0<x1 ,y1<y2,那么m的取值范圍是 .A.m>2 B.m<2 C.m<0 D.m>03:如圖,
24、過原點O的直線交反比例函數y= 的圖象于A、B兩點,ACx軸,ADy軸,ABC的面積為S,那么 .A.S=2 B.2<S<4 C.S=4 D.S>44點(x1,y1)、(x2,y2)在反比例函數y=-的圖象上, 以下的說法中:圖象在第二、四象限;y隨x的增大而增大;當0<x1<x2時, y1<y2;點(-x1,-y1) 、(-x2,-y2)也一定在此反比例函數的圖象上,其中正確的有 個.5假設反比例函數的圖象與直線y=-x+2有兩個不同的交點A、B,且AOB<90º,那么k的取值范圍必是 . A. k>1 B. k<1 C. 0&
25、lt;k<1 D. k<06假設點(,)是反比例函數的圖象上一點,那么此函數圖象與直線y=-x+b|b|<2的交點的個數為 . 7直線與雙曲線交于Ax1,y1,Bx2,y2兩點,那么x1·x2的值 .A.與k有關,與b無關 B.與k無關,與b有關 C.與k、b都有關 D.與k、b都無關知識點26:正多邊形問題1一幅美麗的圖案,在某個頂點處由四個邊長相等的正多邊形鑲嵌而成,其中的三個分別為正三邊形、正四邊形、正六邊形,那么另個一個為 .A. 正三邊形 B.正四邊形 C.正五邊形 D.正六邊形2為了營造舒適的購物環境,某商廈一樓營業大廳準備裝修地面.現選用了邊長相同的正
26、四邊形、正八邊形這兩種規格的花崗石板料鑲嵌地面,那么在每一個頂點的周圍,正四邊形、正八邊形板料鋪的個數分別是 .A.2,1 B.1,2 C.1,3 D.3,13選用以下邊長相同的兩種正多邊形材料組合鋪設地面,能平整鑲嵌的組合方案是 . A.正四邊形、正六邊形 B.正六邊形、正十二邊形 C.正四邊形、正八邊形 D.正八邊形、正十二邊形4用幾何圖形材料鋪設地面、墻面等,可以形成各種美麗的圖案.張師傅準備裝修客廳,想用同一種正多邊形形狀的材料鋪成平整、無空隙的地面,下面形狀的正多邊形材料,他不能選用的是 .5我們常見到許多有美麗圖案的地面,它們是用某些正多邊形形狀的材料鋪成的,這樣的材料能鋪成平整、
27、無空隙的地面.某商廈一樓營業大廳準備裝修地面.現有正三邊形、正四邊形、正六邊形、正八邊形這四種規格的花崗石板料所有板料邊長相同,假設從其中選擇兩種不同板料鋪設地面,那么共有 種不同的設計方案.6用兩種不同的正多邊形形狀的材料裝飾地面,它們能鋪成平整、無空隙的地面.選用以下邊長相同的正多邊形板料組合鋪設,不能平整鑲嵌的組合方案是 . A.正三邊形、正四邊形 B.正六邊形、正八邊形 C.正三邊形、正六邊形 D.正四邊形、正八邊形7用兩種正多邊形形狀的材料有時能鋪成平整、無空隙的地面,并且形成美麗的圖案,下面形狀的正多邊形材料,能與正六邊形組合鑲嵌的是 所有選用的正多邊形材料邊長都相同.8用同一種正
28、多邊形形狀的材料,鋪成平整、無空隙的地面,以下正多邊形材料,不能選用的是 .9用兩種正多邊形形狀的材料,有時既能鋪成平整、無空隙的地面,同時還可以形成各種美麗的圖案.以下正多邊形材料所有正多邊形材料邊長相同,不能和正三角形鑲嵌的是 .知識點27:科學記數法1為了估算柑桔園近三年的收入情況,某柑桔園的管理人員記錄了今年柑桔園中某五株柑桔樹的柑桔產量,結果如下(單位:公斤):100,98,108,96,102,101.這個柑桔園共有柑桔園2000株,那么根據管理人員記錄的數據估計該柑桔園近三年的柑桔產量約為 公斤.×105×105×105 D.6.06×10
29、52為了增強人們的環保意識,某校環保小組的六名同學記錄了自己家中一周內丟棄的塑料袋數量,結果如下(單位:個):25,21,18,19,24,19.武漢市約有200萬個家庭,那么根據環保小組提供的數據估計全市一周內共丟棄塑料袋的數量約為 .×108×107×106×105知識點28:數據信息題1對某班60名學生參加畢業考試成績成績均為整數整理后,畫出頻率分布直方圖,如下圖,那么該班學生及格人數為 . A. 45 B. 51 C. 54 D. 572某校為了了解學生的身體素質情況,對初三2班的50名學生進行了立定跳遠、鉛球、100米三個工程的測試,每個工程總
30、分值為10分.如圖,是將該班學生所得的三項成績成績均為整數之和進行整理后,分成5組畫出的頻率分布直方圖,從左到右前4個小組頻率分別為0.02,0.1,0.12,0.46.以下說法:學生的成績27分的共有15人;學生成績的眾數在第四小組22.526.5內;學生成績的中位數在第四小組22.526.5范圍內.其中正確的說法是 . A. B. C. D.3某學校按年齡組報名參加乒乓球賽,規定“n歲年齡組只允許滿n歲但未滿n+1歲的學生報名,學生報名情況如直方圖所示.以下結論,其中正確的選項是 . A.報名總人數是10人;“13歲年齡組; C.各年齡組中,女生報名人數最少的是“8歲年齡組; D.報名學生
31、中,小于11歲的女生與不小于12歲的男生人數相等. 4某校初三年級舉行科技知識競賽,50名參賽學生的最后得分(成績均為整數)的頻率分布直方圖如圖,從左起第一、二、三、四、五個小長方形的高的比是1:2:4:2:1,根據圖中所給出的信息,以下結論,其中正確的有 .本次測試不及格的學生有15人;79.5這一組的頻率為0.4;假設得分在90分以上(含90分)可獲一等獎,那么獲一等獎的學生有5人.A B C D 5某校學生參加環保知識競賽,將參賽學生的成績(得分取整數)進行整理后分成五組,繪成頻率分布直方圖如圖,圖中從左起第一、二、三、四、五個小長方形的高的比是1:3:6:4:2,第五組的頻數為6,那么
32、成績在60分以上(含60分)的同學的人數 .6對某班60名學生參加畢業考試成績成績均為整數整理后,畫出頻率分布直方圖,如下圖,那么該班學生及格人數為 .A 45 B 51 C 54 D 577某班學生一次數學測驗成績(成績均為整數)進行統計分析,各分數段人數如下圖,以下結論,其中正確的有 該班共有50人; 59.5這一組的頻率為0.08; 89.5這一組; 學生本次測驗成績優秀(80分以上)的學生占全班人數的56%.A. B. C. D.8為了增強學生的身體素質,在中考體育中考中取得優異成績,某校初三(1)班進行了立定跳遠測試,并將成績整理后, 繪制了頻率分布直方圖(測試成績保存一位小數),如
33、下圖,從左到右4個組的頻率分別是0.05,0.15,0.30,0.35,第五 小組的頻數為9 , 假設規定測試成績在2米以上(含2米) 為合格, 那么以下結論:其中正確的有 個 .初三(1)班共有60名學生;第五小組的頻率為0.15;該班立定跳遠成績的合格率是80%.A. B. C. D.知識點29: 增長率問題1今年我市初中畢業生人數約為12.8萬人,比去年增加了9%,預計明年初中畢業生人數將比今年減少9%.以下說法:去年我市初中畢業生人數約為萬人;按預計,明年我市初中畢業生人數將與去年持平; .A. B. C. D. 2,較2001年對外貿易總額增加了10%,那么2001年對外貿易總額為
34、億美元.A. B. C. D. 3某市前年80000初中畢業生升入各類高中的人數為44000人,去年升學率增加了10個百分點,如果今年繼續按此比例增加,那么今年110000初中畢業生,升入各類高中學生數應為 .4我國政府為解決老百姓看病難的問題,決定下調藥品價格.某種藥品在2001年漲價30%后,2003年降價70%后至78元,那么這種藥品在2001年漲價前的價格為 元.5某種品牌的電視機假設按標價降價10%出售,可獲利50元;假設按標價降價20%出售,那么虧本50元,那么這種品牌的電視機的進價是 元. 00元 B.800元 C.850元 D.1000元6從1999年11月1日起,全國儲蓄存款
35、開始征收利息稅的稅率為20%,某人在2001年6月1日存入人民幣10000元,年利率為2.25%,一年到期后應繳納利息稅是 元.687某商品的價格為a元,降價10%后,又降價10%,銷售量猛增,商場決定再提價20%出售,那么最后這商品的售價是 元.8某商品的進價為100元,商場現擬定以下四種調價方案,其中0<n<m<100,那么調價后該商品價格最高的方案是 .A.先漲價m%,再降價n% B.先漲價n%,再降價m% %,再降價% %,再降價%9一件商品,假設按標價九五折出售可獲利512元,假設按標價八五折出售那么虧損384元,那么該商品的進價為 .10自1999年11月1日起,
36、國家對個人在銀行的存款利息征收利息稅,稅率為20%(即存款到期后利息的20%),儲戶取款時由銀行代扣代收.某人于1999年11月5日存入期限為1年的人民幣16000元,年利率為2.25%,到期時銀行向儲戶支付現金 元.知識點30:圓中的角1:如圖,O1、O2外切于點C,AB為外公切線,AC的延長線交O1于點D,假設AD=4AC,那么ABC的度數為 . °°°°2:如圖,PA、PB為O的兩條切線,A、B為切點,ADPB于D點,AD交O于點E,假設DBE=25°,那么P= .°°°°3:如圖, AB為O的直徑
37、,C、D為O上的兩點,AD=CD,CBE=40°,過點B作O的切線交DC的延長線于E點,那么CEB= .A. 60°°°°4EBA、EDC是O的兩條割線,其中EBA過圓心,弧AC的度數是105°,且AB=2ED,那么E的度數為 .°°°5:如圖,RtABC中,C=90°,以AB上一點O為圓心,OA為半徑作O與BC相切于點D, 與AC相交于點E,假設ABC=40°,那么CDE= .°°°°6:如圖,在O的內接四邊形ABCD中,AB是直徑, BCD=
38、130º,過D點的切線PD與直線AB交于P點,那么ADP的度數為 . ºººº7:如圖,兩同心圓的圓心為O,大圓的弦AB、AC切小圓于D、E兩點,弧DE的度數為110°,那么弧AB的度數為 .°°°8. :如圖,O1與O2外切于點P,O1的弦AB切O2于C點,假設APB=30º,那么BPC= . ºººº知識點31:三角函數與解直角三角形1在學習了解直角三角形的知識后,小明出了一道數學題:我站在綜合樓頂,看到對面教學樓頂的俯角為30º,樓底的俯角
39、為45º,兩棟樓之間的水平距離為20米,請你算出教學樓的高約為 米.結果保存兩位小數,1.4 ,2在學習了解直角三角形的知識后,小明出了一道數學題:我站在教室門口,看到對面綜合樓頂的仰角為30º,樓底的俯角為45º,兩棟樓之間的距離為20米,請你算出對面綜合樓的高約為 米.1.4 ,3:如圖,P為O外一點,PA切O于點A,直線PCB交O于C、B, ADBC于D,假設PC=4,PA=8,設ABC=,ACP=,那么sin:sin= .A. B. C.2 D. 44如圖,是一束平行的陽光從教室窗戶射入的平面示意圖,光線與地面所成角AMC=30°,在教室地面的影
40、子MN=2米.假設窗戶的下檐到教室地面的距離BC=1米,那么窗戶的上檐到教室地面的距離AC為 米. A. 2米 B. 3米 C. 3.2米 D. 米5ABC中,BD平分ABC,DEBC于E點,且DE:BD=1:2,DC:AD=3:4,CE=,BC=6,那么ABC的面積為 . A.知識點32:圓中的線段1:如圖,O1與O2O1的半徑為R,O2的半徑為r,假設tanABC=,那么的值為 . A B C2 D32:如圖,O1、O2內切于點A,O1的直徑AB交O2于點C,O1EAB交O2于F點,BC=9,EF=5,那么CO1= 3:如圖,O1、O2內切于點P, O2的弦AB過O1點且交O1于C、D兩點
41、,假設AC:CD:DB=3:4:2,那么O1與O2的直徑之比為 . A.2:7 B.2:5 C.2:3 D.1:34:如圖,O1與O2外切于A點,O1的半徑為r,O2的半徑為R,且r:R=4:5,P為O1一點,PB 切O2于B點,假設PB=6,那么PA= . 6:如圖,PA為O的切線,PBC為過O點的割線,PA=,O的半徑為3,那么AC的長為為 . A. B. C. D.4:如圖, RtABC,C=90°,AC=4,BC=3,O1內切于ABC,O2切BC,且與AB、AC的延長線都相切,O1的半徑R1,O2的半徑為R2,那么= . A. B. C. D.5O1與邊長分別為18cm、25
42、cm的矩形三邊相切,O2與O1外切,與邊BC、CD相切,那么O2的半徑為 . 6:如圖,CD為O 的直徑,AC是O的切線,AC=2,過A點的割線AEF交CD的延長線于B點,且AE=EF=FB,那么O的半徑為 .A. B. C. D. 7:如圖, ABCD,過B、C、D三點作O,O切AB 于B點,交AD于E點.假設AB=4,CE=5,那么DE的長為 . A.2 B. C. 8. 如圖,O1、O2內切于P點,連心線和O1、O2分別交于A、B兩點,過P點的直線與O1、O2分別交于C、D兩點,假設BPC=60º,AB=2,那么CD= . A.1 B.2 C. D.知識點33:數形結合解與函數
43、有關的實際問題1某學校組織學生團員舉行“抗擊非典,保護城市衛生宣傳活動,從學校騎車出發,先上坡到達A地,再下坡到達B 地,其行程中的速度v(百米/分)與時間t(分)關系圖象如下圖.假設返回時的上下坡速度仍保持不變,那么他們從B地返回學校時的平均速度為 百米/分. B. C. D.2有一個附有進出水管的容器,每單位時間進、出的水量都是一定的.設從某一時刻開始5分鐘內只進水不出水,在接著的2分鐘內只出水不進水,又在隨后的15分鐘內既進水又出水,剛好將該容器注滿.容器中的水量y升與時間x分之間的函數關系如下圖.那么在第7分鐘時,容器內的水量為 升.3. 甲、乙兩個個隊完成某項工程,首先是甲單獨做了1
44、0天,然后乙隊參加合做,完成剩下的全部工程,設工程總量為單位1,工程進度滿足如下圖的函數關系,那么實際完成這項工程所用的時間比由甲單獨完成這項工程所需時間少 . 4.儲油量(噸)與時間(分)的函數關系如下圖.現將裝滿油的儲油罐只開出油管,不開進油管,那么放完全部油所需的時間是 分鐘. 5. 校辦工廠某產品的生產流水線每小時可生產100件產品,生產前沒有積壓生產3小時后另安排工人裝箱(生產未停止),假設每小時裝產品150件,未裝箱的產品數量y是時間t的函數,那么這個函數的大致圖像只能是 . A B C D6. 如圖,某航空公司托運行李的費用y(元)與托運行李的重量x(公斤)的關系為一次函數,由圖
45、中可知,行李不超過 7. 小明利用星期六、日雙休騎自行車到城外小姨家去玩.星期六從家中出發,先上坡,后走平路,再走下坡路到小姨家.行程情況如下圖.星期日小明又沿原路返回自己家.假設兩天中,小明上坡、平路、下坡行駛的速度相對不變,那么星期日,小明返回家的時間是 分鐘.A. 分鐘8. 有一個附有進、出水管的容器,每單位時間進、出的水量都是一定的,設從某時刻開始5分鐘內只進不出水,在隨后的15分鐘內既進水又出水,容器中的水量y(升)與時間t(分)之間的函數關系圖像如圖,假設20分鐘后只出水不進水,那么需 分鐘可將容器內的水放完.A20分鐘 B.25分鐘 C分鐘 D分鐘9. 一學生騎自行車上學,最初以
46、某一速度勻速前進, 中途由于自行車發生故障,停下修車耽誤了幾分鐘.為了按時到校,這位學生加快了速度,仍保持勻速前進,結果準時到達學校,這位學生的自行車行進路程S(千米)與行進時間 t(分鐘)的函數關系如右圖所示,那么這位學生修車后速度加快了 千米/分.10. 某工程隊接受一項輕軌建筑任務,方案從2002年6月初至2003年5月底(12個月) 完成,施工3個月后,實行倒計時,提高工作效率,施工情況如下圖,那么按提高工作效率后的速度做完全部工程,可提前 月完工.A.10.5個月 B.知識點34:二次函數圖像與系數的關系1. 如圖,拋物線y=ax2+bx+c圖象,那么以下結論中:abc>0;2
47、a+b<0;a> .A. B. C. D.2. :如圖,拋物線y=ax2+bx+c的圖象如下圖,那么以下結論:abc>0; ;a> b>1.其中正確的結論是 .A. B. C. D.3. :如下圖,拋物線y=ax2+bx+c的對稱軸為x=-1,那么以下結論正確的個數是 .abc>0 a+b+c>0 c>a 2c>bA. B. C. D.4. 二次函數yax2bxc的圖象與x軸交于點-2,0,x1,0,且1<x1<2,與y軸的正半軸的交點在點0,2的上方.以下結論:a<b0;2a+c0;4ac0; . A1個 B2個 C3個
48、 D4個5. :如下圖,拋物線y=ax2+bx+c的對稱軸為x=-1,且過點(1,-2),那么以下結論正確的個數是 . abc>0 >-1 b<-1 5a-2b<0A. B. C. D.6. :如下圖,拋物線y=ax2+bx+c的圖象如下圖,以下結論:a<-1;-1<a<0;a+b+c<2;0<b<1.其中正確的個數是 .A. B. C. D.7. 二次函數y=ax2+bx+c的圖象如下圖,那么a、b、c的大小關系是 .A.a>b>c B.a>c>b C.a>b=c D.a、b、c的大小關系不能確定8. 如圖,拋物線y=ax2+bx+c圖象與x軸交于A(x1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論