2022年2022年概率論與數理統計知識點張繼昌_第1頁
2022年2022年概率論與數理統計知識點張繼昌_第2頁
2022年2022年概率論與數理統計知識點張繼昌_第3頁
2022年2022年概率論與數理統計知識點張繼昌_第4頁
2022年2022年概率論與數理統計知識點張繼昌_第5頁
已閱讀5頁,還剩3頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、精選學習資料 - - - 歡迎下載學習必備歡迎下載第一章概率論的基本概念一樣本空間和隨機大事( 1)樣本空間:某隨機試驗的可能結果的全體構成的集合,常用s (或 )表示;精品學習資料精選學習資料 - - - 歡迎下載( 2)隨機大事:可能發生可能不發生的“大事”,常用大寫字母a、 b、表示;精品學習資料精選學習資料 - - - 歡迎下載( 3)隨機大事之間的關系:ab ;ab ;a 與 b 互不相容,記為:ab;( 4)隨機大事的運算(與集合運算相同):精品學習資料精選學習資料 - - - 歡迎下載和: ab ;交: ab ;差: ab ;逆大事:asa ;精品學習資料精選學習資料 - - -

2、 歡迎下載( 3)隨機大事運算的運算律:交換律:結合律:安排律:精品學習資料精選學習資料 - - - 歡迎下載對偶律:aba b、abcab c 、精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載abab、abcabc 、 .精品學習資料精選學習資料 - - - 歡迎下載二概率的公理和性質:精品學習資料精選學習資料 - - - 歡迎下載公理:( 1) 0p a1 、( 2) ps1 、精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載( 3) a、 b 互不相容,就p ab p apb .精品學習資料精選學習

3、資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載性質:( 1) p0 ;(2) p a1p a ;精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載( 3)如ab 、 就p abp ap b ;精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載( 4) p abp ap b p ab ,精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載p abc p ap bp c p abp ac p bcp abc ;精品學習資料精選學習資料 - - - 歡

4、迎下載三.等可能概率問題(古典概型)及其概率運算;四.幾個公式1 條件概率與乘法公式精品學習資料精選學習資料 - - - 歡迎下載條件概率p b | ap ab ;p a精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載乘法公式:p abp a p b |a ,精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載p abc p ap b | a pc| ab .精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載2全概率公式:如abs、a、 b 互不相容 、就精品學習資料精

5、選學習資料 - - - 歡迎下載學習必備歡迎下載精品學習資料精選學習資料 - - - 歡迎下載p d p ap d| ap b p d| b ;精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載3貝葉斯公式:p a | d p ad p a p d | a,精品學習資料精選學習資料 - - - 歡迎下載p d p a p d | ap b p d | b精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載4獨立性:p a0、 p b0 ,如p abp a p b ,就 a 與 b 相互獨立 .精品學習資料精選學習

6、資料 - - - 歡迎下載其次章:隨機變量及其分布一. 離散型隨機變量離散型隨機變量x 用分布律描述,精品學習資料精選學習資料 - - - 歡迎下載分布律有性質: ( 1) 0 pi1, ( 2)pi1 ;i精品學習資料精選學習資料 - - - 歡迎下載對于實際問題中引進的隨機變量,第一要明確他為否為離散型,如為,就分析他的全體可能取值,再用適當的方法求各個值對應的概率;幾種常見的重要的離散型( 1) 01 分布 (二點分布)其分布律為:x01pqp精品學習資料精選學習資料 - - - 歡迎下載分布函數為:f x0x0q0x11x1精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選

7、學習資料 - - - 歡迎下載2泊松分布x kp xke k.k = 0 , 1、2、精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載3 ;貝努里分布(二項分布)x b n、pp xk c k p k q n kk = 0、 1、 2、, n.精品學習資料精選學習資料 - - - 歡迎下載n二項分布的客觀背景:在一次試驗中, 隨機大事a 發生的概率為p,( a 不發生的概率為 q=1- p )獨立重復n 次試驗中, a 發生的次數x 就為二項分布:x bn、p、二 隨機變量的分布函數設隨機變量x ,任意實數x, 函數:f xp xxx三連續型隨機變量

8、連續型隨機變量x 用密度函數fx描述;密度函數的性質精品學習資料精選學習資料 - - - 歡迎下載學習必備歡迎下載精品學習資料精選學習資料 - - - 歡迎下載f x0 ;f xdx1;paxbbf xdx ;af x =f x;精品學習資料精選學習資料 - - - 歡迎下載幾種常見的連續型隨機變量,( 1)勻稱分布x u a、b1axb密度函數: f x =ba0其他精品學習資料精選學習資料 - - - 歡迎下載( 2)指數分布密度函數為:xex0f x0x0精品學習資料精選學習資料 - - - 歡迎下載( 3)正態分布: x n 、2 精品學習資料精選學習資料 - - - 歡迎下載密度函數

9、為:f xx21e2 2x2精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載標準正態分布:x n 0、1 ,精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載其分布函數為:xp xxt 21xe2 dt2精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載留意到密度函數 x關于 oy 軸為對稱的,于為精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載ap xa) 1p xa1a精品學習資料精選學習資料 - - - 歡迎下載精品學

10、習資料精選學習資料 - - - 歡迎下載p xapaxap xap xa精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載 a1a2a1精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載x1積分e2t 22 dt不能用常規的方法運算,我們把分布函數 z的值編精品學習資料精選學習資料 - - - 歡迎下載制成表格(見附表) ,標準正態分布的概率由查表得到;精品學習資料精選學習資料 - - - 歡迎下載例. 1 = 0.8413、 1.645 = 0.95、1.960.9750 等;精品學習資料精選學習資料 - -

11、 - 歡迎下載一般正態分布概率的運算:精品學習資料精選學習資料 - - - 歡迎下載設x n 、2 ,密度函數為:f x2 x1e2 22精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載分布函數為:f xp xxtx1e2222dt =x.精品學習資料精選學習資料 - - - 歡迎下載學習必備歡迎下載這樣, 就把一般正態分布概率的運算轉化為標準正態分布概率的運算,由查表解決;第三章多維隨機變量一. 二維離散型隨機變量( 1)聯合分布律:精品學習資料精選學習資料 - - - 歡迎下載有性質:0p ij1, i、 j = 1、 2、;pij1 .ij精品

12、學習資料精選學習資料 - - - 歡迎下載( 2)邊緣分布律邊緣分布律可以從聯合分布律中按行(按列)相加得到:二二維連續型隨機變量( 1)聯合密度函數f x、 y ,有如下的性質;精品學習資料精選學習資料 - - - 歡迎下載( 1) f x、 y0 ;( 2) .f x、 ydxdy1 ;精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載( 3) p x 、y d f x、 ydxdy ;( 4)2 f x、 yf x、 y ;精品學習資料精選學習資料 - - - 歡迎下載dx y2 邊緣密度函數精品學習資料精選學習資料 - - - 歡迎下載f x xfx xxf u、 ydyduxf x、 ydy ;精品學習資料精選學習資料 - - - 歡迎下載精品學習資料精選學習資料 - - - 歡迎下載fy yfy yyf x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論