高考數學復習點撥充分必要條件常見題型MicrosoftW_第1頁
高考數學復習點撥充分必要條件常見題型MicrosoftW_第2頁
高考數學復習點撥充分必要條件常見題型MicrosoftW_第3頁
高考數學復習點撥充分必要條件常見題型MicrosoftW_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、充分必要條件常見題型 山東 胡大波一、 直接判斷型直接判斷型即利用充分必要條件的定義,其思路為:(1)首先分清條件是什么,結論是什么;(2)然后嘗試用條件推結論,或用結論推條件;(舉反例說明其不成立是常用的推理方法) (3)最后再指出條件是結論的什么條件。 例1、 “a1”是“函數在區間上為增函數”的( )a、充分不必要條件 b、必要不充分條件c、充要條件 d、既不充分也不必要條件 解:當a1且時,x1,顯然函數f(x)x1在區間上為增函數,而當時,函數xa在區間為增函數,故選a.點評:在判斷充分條件、必要條件、充要條件時,首先應弄清哪一個是“條件”,哪一個是“結論”,因為同樣是ab,如果a是

2、條件,b是結論,則a是b成立的充分條件;如果b是條件,a是結論,則b是a成立的必要條件,其次,再判斷是條件蘊含結論,還是結論蘊含條件,即判斷到底向哪一邊推結論才成立,明確了這兩點,就不難對問題作出正確的判斷。二、集合判斷型例2、設p:,q:,則p是q的( )a、充分不必要條件 b、必要不充分條件c、充要條件 d、既不充分也不必要條件 解:由或,即;由,即,顯然,則p是q的充分不必要條件,故選a.點評:充要條件可以從集合的包含關系的角度來理解它們之間的對應關系,設滿足條件p的對象組成集合p,滿足條件q的對象組成集合q.(1)若,則p為q的充分條件,其中當時,p為q的充分不必要條件。(2)若,則p

3、為q的必要條件,其中當時,p為q的必要不充分條件。(3)若,且,即pq,則p為q的充要條件。(4)如果以上三種關系均不成立,即p、q之間沒有包含或相等關系(pq且qp)此時或p、q既有公共元素,也有非公共元素,則p既不是q的充分條件,也不是q的必要條件。三、傳遞法判斷型若,則,即a是d的充分條件,利用這一結論可研究多個命題之間的充要關系。例3、已知p,q都是r的必要條件,s是r的充分條件,q是s的充分條件,你們s,r,p分別是q的什么條件?解析:用箭頭符號“”畫出表示題設條件的圖形(如圖),由圖,知srq,所以sq,又qs,所以s,即s是q的充要條件。由rq,qsr,得rq,即r是q的充要條件

4、。由qsrp,得qp,故p是q的必要條件。 四、條件證明型 關鍵是弄清條件與結論之間的關系,分兩步證明,即證明充分性和必要性。 例4、設a,b,c為abc的三邊,求證:方程與有公共根的充要條件是 分析:區分條件與結論,證明充分性是由條件結論,證明必要性是由結論條件。 證明:充分性:因為,所以于是方程可化為,所以,所以,該方程有二根, 同樣另一方程也可化為,即,也有二根,可以發現,所以方程有公共根。必要性:設是方程的公共根,則 由(1)(2)得 代入(1)并整理可得所以,所以結論成立。點評:對論證充要條件要分清“充分性”和“必要性”,然后分別作出相應的證明。五、條件探索型探求充要條件的問題一般有兩種處理方法,一是將題意等價轉化,進而化簡求得,二是先由題意求出條件,再證明充分性。例5、已知關于x的一元二次方程(), 求方程和的根都是整數的充要條件分析:根據方程和有實根且實根為整數,先求出整數m,然后再確定它是否具有充分性。解:方程有實數根的充要條件,解得所以,而,故m1或m0或m1當m1時,方程為,無整數根;當m0時,方程為,無整數根;當m1時,方程為,方程,和均有整數根。從而,和均有整數根m1;反之,1,方程為,方程為,和均有整數根,所以和均有整數根的充要條件是1.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論