金融數據挖掘_第1頁
金融數據挖掘_第2頁
金融數據挖掘_第3頁
金融數據挖掘_第4頁
金融數據挖掘_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、基于glm (廣義線性模型)的數據分析sas里的glm應用在實際中比較廣泛,對數據的分析具有比較強的普適 性。趨勢面回歸分析(trend analysis)是以多元回歸分析為理論基礎的一 種預測 與統計技術。它用空間坐標法進行多項式回歸,從中估計出最佳的 回歸模型,因 此也被稱為趨勢面分析,當不知道手中的數據呈線性還是非 線性相關時,可以采用趨勢面數據分析方法,以便找出擬合數據的最佳統計 預測模型。本文運用glm對一定的數據進行glm分析。一、數據與要求此處選取15名吧不同程度的煙民的每日飲酒(啤酒)量與心電圖指標(zb)的對應數據。然后設法建立zb與日抽煙量(x) /支和日飲酒量(y) /升

2、之間的關系。序號組另ij日抽煙量(x) /支日飲酒量(y) /升心電圖指標/ 、113010280212511260313513330414014400514514410622012270721811210822512280922513300102231329011340144101234515420133481642514350184501535519470二、運用glm過程進行趨勢面分析1 .趨勢分析的glm程序data beer;input obsn x y zb; cards;01 30 10 28002 25 11 26003 35 13 33004 40 14 40005 45 1

3、441006 20 12 27007 18 11 21008 25 12 28009 25 13 30010 23 13 29011 40 1441012 45 15 42013 48 16 42514 50 18 45015 55 19 470 proc glm; model zb=x y/p;proc glm;model zb=x y x*x x*y y*y/p;proc glm;model zb=x y x*x*x x*x*y x*y*y y*y*y/p;proc glm;model zb=x y x*x*x x*x*y x*y*y y*y*y x*x*x*x x*x*x*y x*x*y

4、*y x*y*y*y y*y*y*y/p; run;2.四種分析模型結果(1)一階趨勢模型dependent variable: zb源變量自由度平方和均值3sum ofsourcedfsquaresmean squaref valuepr fmodel90615.2099345307.60497127.19fx189541.5655889541.56558251.36 f114652.2435114652.2435141.13x |t|intercept64.0499938033.065399191.940.07665.383855650.839475676.41 f18666.167161

5、07.75 fx189541.5655889541.56558516.86 fx1965.2913631965.29136315.570.0426y1127.4395437127.43954370.740.4133x*x143.662297243.66229720.250.6277x*y1242.0343234242.03432341.400.2675y*y149.843031649.84303160.290.6047standardparameterestimateerrort valuepr|t|intercept-262.7664793109.1074817-2.410.0394x16.

6、06997796.80786202.360.0426y23.539132727.44498670.860.4133x*x0.06387730.12723830.500.6277x*y-1.16510160.9857119-1.180.2675y*y1.16733622.17629820.540.60476270.0000000255.125602414.8743976observation12345observed280.0000000260.0000000330.0000000400.0000000410.0000000predicted279.4168700258.6814596351.0

7、997183388.1251282414.0657505residual0.58313001.3185404-21.099718311.8748718-4.06575057210.0000000216.6773768-6.677376868280.0000000300.00000009290.000000010410.000000011420.000000012425.000000013450.00000001415470.0000000279.9417834303.5367795295.5572467388.1251282419.0280585436.4318573453.755470646

8、5.43176990.0582166-3.5367795-5.557246721.87487180.9719415-11.4318573-3.75547064.5682301-0.0000001559.164195-0.000000-0.3542052.694808dependent variable: zb 源變量自由度平方和均值f值概率值sourcedfsum ofsquaresmean squaref value pr fmodel93393.4641415565.5773683.21 fx189541.5655889541.56558478.66 fx11643.3470811643.

9、3470818.780.0180197.474017197.4740171.060.3343y10.56x*x*x1105.516422105.5164220.4741x*x*y1113.710330113.7103300.610.4580x*y*y1146.610010146.6100100.780.4018y*y*y1173.116161173.1161610.930.3642standardparameterestimateerror t valuepr|t|intercept-166.007458982.37772231-2.020.0786x11.13825983.757952332

10、.960.0180y15.778434015.357039051.030.3343x*x*x-0.01541320.02052250-0.750.4741x*x*y0.12031870.154323330.780.4580x*y*y-0.34167860.38595313-0.890.4018y*y*y0.31348940.325876140.960.364215470.0000000463.53108336.4689167observationobservedpredictedresidual1280.0000000281.0906363-1.09063632260.0000000256.0

11、4837833.95162173330.0000000351.8935219-21.89352194400.0000000390.57078969.42921045410.0000000409.23096520.76903486270.0000000257.998349012.00165107210.0000000220.0483966-10.04839668280.0000000275.01603684.98396329300.0000000299.47099730.529002710290.0000000295.8228899-5.822889911410.0000000390.57078

12、9619.429210412420.0000000420.5758580-0.575858013425.0000000437.4437284-12.443728414450.0000000455.6875798-5.6875798-0.0000001496.535862-0.000000-0.3575452.686333sum of residualssum of squared residualssum of squared residuals - error ssfirst order autocorrelationdurbin-watson d4)四階趨勢模型dependent vari

13、able: zb 源變量自由度平方和均值f值概率值sum ofsourcedfsquaresmean squaref valuepr fmodel1194480.319198589.1199362.900.0029error3409.68081136.56027corrected total1494890.00000r-squarecoeff varroot msezb mean0.9956833.367695 11.68590347.0000sourcedftype i ssmean squaref valuepr fx189541.5655889541.56558655.690.0001y

14、11073.644351073.644357.860.0676x*x*x12078.776642078.7766415.220.0299x*x*y1508.85526508.855263.730.1491x*y*y117.5061417.506140.130.7440y*y*y1173.11616173.116161.270.3421x*x*x*x152.9156652.915660.390.5777x*x*x*y1193.81980193.819801.420.3192x*x*y*y1452.42798452.427983.310.1663x*y*y*y140.3287940.328790.

15、300.6246y*y*y*y1347.36281347.362812.540.2090sourcedftype iii ssmean squaref valuepr fx153.834735453.83473540.390.5746y118.442245818.44224580.140.7376x*x*x1707.3985134707.39851345.180.1073x*x*y1688.7276032688.72760325.040.1104x*y*y1669.2155979669.21559794.900.1137y*y*y1614.9897506614.98975064.500.123

16、9x*x*x*x173.525495773.52549570.540.5162x*x*x*y121.572098721.57209870.160.7176x*x*y*y1150.8940383150.89403831.100.37040.2581x*y*y*y1264.7516451264.75164511.94y*y*y*y1347.3628138347.36281382.540.2090standardparameterestimateerrort valuepr |t|intercept-748.5352475602.9093096-1.240.3026x21.526850134.285

17、57060.630.5746y63.4532525172.66693160.370.7376x*x*x1.11290830.48897822.280.1073x*x*y-7.84664423.4939960-2.250.1104x*y*y17.69195997.99199322.210.1137y*y*y-12.81731806.0398396-2.120.1239x*x*x*x-0.00528950.0072088-0.730.5162x*x*x*y-0.03396280.0854515-0.400.7176x*x*y*y0.42181270.40127851.050.3704x*y*y*y

18、-1.09527330.7866207-1.390.2581y*y*y*y0.84110790.52737831.590.2090observation1234567891011121314observed280.0000000260.0000000330.0000000400.0000000410.0000000270.0000000210.0000000280.0000000300.0000000290.0000000410.0000000420.0000000425.0000000450.0000000predicted280.6428697254.9148649336.2353148399.8451524409.0029100265.5623644212.0079405287.4716063292.6701245295.8090433399.8451524428.1747562422.5228478450.5733972residual-0.64286975.0851351-6.23531480.15484760.99709004.4376356-2.0079405-7.47160637.3298755-5.80

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論