




全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
AMathematicalModelfortheMechanicalEtchingofGlassJ.H.M.tenThijeBoonkkampTechnischeUniversiteitEindhoven,DepartmentofMathematicsandComputerSciencetenthijewin.tue.nlSummary.Anonlinearfirst-orderPDEdescribingthedisplacementofaglasssur-facesubjecttosolidparticleerosionispresented.Theanalyticalsolutionisderivedbymeansofthemethodofcharacteristics.Alternatively,theEngquist-Osherschemeisappliedtocomputeanumericalsolution.Keywords:solidparticleerosion,kinematiccondition,singlePDEoffirstorder,characteristic-stripequations,Engquist-Osherscheme1IntroductionSomemoderntelevisiondisplayshaveavacuumenclosure,thatisinternallysupportedbyaglassplate.Thisplatemaynothinderthedisplayfunction.Forthatreasonithastobeaccuratelypatternedwithsmalltrenchesorholessothatelectronscanmovefreelyfromthecathodetothescreen.Onemethodtomanufacturesuchglassplatesistocoveritwithanerosion-resistantmaskandblastitwithanabrasivepowder.InSection2wepresentanonlinearfirst-orderPDEmodellingthisso-calledsolidparticleerosionprocess.Next,inSection3,wepresenttheanalyticalsolutionusingthemethodofcharac-teristics.Alternatively,inSection4,webrieflydescribeanumericalsolutionprocedure.2MathematicalModelforPowderErosionInthissectionweoutlineamathematicalmodelforsolidparticleerosion,toproducethintrenchesinaglassplate;formoredetailssee4.Consideraninitiallyflatsubstrateofbrittlematerial,coveredwithaline-shapedmask.Weintroducean(x,y,z)-coordinatesystem,wherethe(x,y)-planecoincideswiththeinitialsubstrateandthepositivez-axisisdirectedAMathematicalModelfortheMechanicalEtchingofGlass387intothematerial.Acontinuousfluxofalumina(Al2O3)particles,directedinthepositivez-direction,hitsthesubstrateathighvelocityandremovesmaterial.Thepositionz=(x,t)ofthetrenchsurfaceattimetisgovernedbythekinematicconditiont+(x)f(x)=0,0x0,(1)wherexisthetransversecoordinateinthetrench,andwhere(x)istheparticlemassflux,whichwillbespecifiedlater.Thespatialvariablesandxarescaledwiththetrenchwidthandthetimetwithacharacteristictimeneededtopropagateasurfaceatnormalimpactoverthiswidth.Thefunctionf=f(p)in(1)isdefinedbyf(p):=parenleftbig1+p2parenrightbigk/2,(2)withkaconstant(2k4).Atheoreticalmodelpredictsthevaluek=7/3,3.Equation(1)issupplementedwiththefollowinginitialandboundaryconditions:(x,0)=0,0x0.(3b)Theboundaryconditionsin(3b)meanthatthetrenchcannotgrowattheendsx=0andx=1.3AnalyticalSolutionMethodWecanwriteequation(1)inthecanonicalformF(x,t,p,q):=q(x)parenleftbig1+p2parenrightbigk/2=0,(4)withp:=xandq:=t.Thesolutionof(4)canbeconstructedfromthefollowingIVPforthecharacteristic-stripequations1dxds=Fp=(x)kp(1+p2)k/2+1,x(0;)=,(5a)dtds=Fq=1,t(0;)=0,(5b)dds=pFp+qFq=(x)1+(k+1)p2(1+p2)k/2+1,(0;)=0,(5c)dpds=(Fx+pF)=prime(x)1(1+p2)k/2,p(0;)=0,(5d)dqds=(Ft+qF)=0,q(0;)=(),(5e)388J.H.M.tenThijeBoonkkampwheresandaretheparametersalongthecharacteristicsandtheinitialcurve,respectively.Notethatthesolutionof(5b)and(5e)istrivial,andwefindt(s;)=sandq(s;)=().Inordertomodelthefiniteparticlesize,whichmakesthatparticlesclosetothemaskarelesseectiveintheerosionprocess,weintroducetransi-tionregionsofthickness.Weassumethat(x)increasescontinuouslyandmonotonicallyfrom0attheboundariesofthetrenchto1atx=,1.Theparameterischaracteristicofthe(dimensionless)particlesizeandatypicalvalueis=0.1.Weadoptthesimplestpossiblechoicefor(x),i.e.,(x)=x/if0x,1ifx1,(1x)/if1x1.(6)Asaresultof(6),thegrowthrateofthesurfacepositionclosetothemaskissmallerthaninthemiddleofthehole.Since(0)=(1)=0,weobtainfrom(5)thesolutionsx(t;0)=(t;0)=0andx(t;1)=1,(t;1)=0,implyingthattheboundaryconditions(3b)forareautomaticallysatisfied.Byintroducingtransitionregions,wecreateintersectingcharacteristics.Therefore,thesolutionof(4)canonlybeaweaksolutionanditisanticipatedthatshockswillemergefromtheedgesx=andx=1.Letx=s,1(t)andx=s,2(t)denotethelocationoftheshocksattimetoriginatingatx=andx=1,respectively.Eachpoint(s,i(t),t)(i=1,2)ontheseshocksisconnectedtotwodierentcharacteristicsthatexistonbothsidesoftheshocks.Thespeedoftheseshocksisgivenbythejumpconditionds,idtp=(x)(1+p2)k/2,(i=1,2),(7)wherepdenotesthejumpofpacrosstheshock.Thus,wecandistinguishthefollowingfiveregionsinthe(x,t)-plane:thelefttransitionregion0x00.20.40.60.8100.10.20.30.40.50.60.70.80.91xtFig.1.Characteristicsandshocksof(5),for=0.1andk=2.33.AMathematicalModelfortheMechanicalEtchingofGlass389(region1),therighttransitionregion1x1(region2),theinteriordomainleftofthefirstshock(region3),theinteriordomainrightofthesecondshock(region4)andtheregionbetweenthetwoshocks(region5);seeFig.1.Note,thatthelocationoftheshocksdependsonthesolutionthrough(7).Wecanderivetheanalyticalsolutionof(5)intheregions1,3and5,coupledwithanumericalsolutionof(7).Thesolutionintheothertworegionfollowsbysymmetry;formoredetailssee4.TheresultsarecollectedinFig.2,whichgivesthesolutionforandpattimelevelst=0.0,0.1,.,1.0for=0.1andk=2.33.Thisfigurenicelydisplaysthefeaturesofthesolution:aslantedsurfaceinthetransitionregions,aflatbottomintheinteriordomainandacurvedsurfaceinbetween.Also,inwardlypropagatingshocksareclearlyvisible.00.20.40.60.8100.10.20.30.40.50.60.70.80.91x00.20.40.60.813210123xpFig.2.Analyticalsolutionforthesurfaceposition(left)anditsslope(right).Pa-rametervaluesare=0.1andk=2.33.4NumericalSolutionMethodAlternatively,wewillcomputeanumericalsolutionof(1).Tothatpurpose,wecoverthedomain0,1withcontrolvolumesVj=xj1/2,xj+1/2)ofequalsizex=xj+1/2xj1/2.LetxjbethegridpointinthecentreofVj.Furthermore,weintroducetimelevelstn=nt,withtbeingthetimestep.Letnjdenotethenumericalapproximationof(xj,tn).Afinitevolumenumericalschemefor(1)canbewritteninthegenericformn+1j=njt(xj)Fparenleftbigpnj1/2,pnj+1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 塑料人造革的透氣性與透濕性研究考核試卷
- 航空旅游航路優(yōu)化與航班準點率提升考核試卷
- 藤制家居用品消費者行為分析考核試卷
- 氣動元件的防潮密封技術(shù)考核試卷
- 豆類油料和薯類種植行業(yè)的研發(fā)創(chuàng)新與技術(shù)應(yīng)用考核試卷
- 豆類種植的農(nóng)業(yè)產(chǎn)業(yè)鏈優(yōu)化考核試卷
- 豆腐腦的地方特色推廣考核試卷
- 股權(quán)投資中的PIPE投資策略考核試卷
- 漆器制作與非物質(zhì)文化遺產(chǎn)保護考核試卷
- 礦石浮選劑的合成與應(yīng)用-石墨滑石考核試卷
- 小學六年級下冊數(shù)學期中考試試卷分析
- 2024年寧波金融開發(fā)投資控股集團有限公司招聘筆試沖刺題(帶答案解析)
- AQ-T 2073-2019 金屬非金屬礦山在用高壓開關(guān)設(shè)備電氣安全檢測檢驗規(guī)范
- 中外政治思想史-形成性測試三-國開(HB)-參考資料
- 河北省課程思政示范課程、教學名師和團隊申報書
- 醫(yī)院保安服務(wù)項目組織機構(gòu)與人員配備
- 2024年浙江湖州市城市投資發(fā)展集團招聘筆試參考題庫含答案解析
- 高血壓和心血管疾病的預(yù)防與管理
- 小學數(shù)學-水中浸物問題-完整版題型訓練30題-帶答案
- 中國大學生積極心理品質(zhì)量表
- JCT908-2013 人造石的標準
評論
0/150
提交評論