




已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
函數(shù)y=Asin(x+)的圖象 說課稿(自用)教材:人民教育出版社全日制普通高級(jí)中學(xué)教科書(必修)數(shù)學(xué)數(shù)學(xué)第一冊(cè)(下) 第四章第9節(jié)一、 教材分析1.教學(xué)內(nèi)容本節(jié)主要是通過圖像變換和五點(diǎn)法作出函數(shù)y=A sin(x+)(A0, 0)的圖象,介紹函數(shù)y=A sin(x+)(A.0, 0)的性質(zhì),及它與y=sinx的圖象的關(guān)系。2.本節(jié)教材的地位與作用由正弦曲線變換得到y(tǒng)=A sin(x+)(A.0, 0)圖象的思維過程充分體現(xiàn)了由簡單到復(fù)雜、特殊到一般的化歸的數(shù)學(xué)思想,訓(xùn)練了學(xué)生運(yùn)用數(shù)形結(jié)合的思想解決問題的能力。函數(shù)y=Asin(x+)(A.0, 0)是學(xué)生繼學(xué)習(xí)了正弦函數(shù)、余弦函數(shù)之后要學(xué)習(xí)的又一重要的三角函數(shù),它與高中物理課程中的“機(jī)械波”的內(nèi)容與之緊密相關(guān),因此能為實(shí)際問題的解決提供良好的理論依據(jù)。同時(shí),本節(jié)教材也是培養(yǎng)學(xué)生觀察、分析、類比、歸納和探究的數(shù)學(xué)能力的重要素材。3.教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):通過圖象變換和五點(diǎn)法作出函數(shù)y=Asin(x+)(A0,0)的圖象,掌握參數(shù)A、對(duì)其形狀和位置的影響,分析其與函數(shù)y=sinx的圖象的關(guān)系。難點(diǎn):理解并掌握函數(shù)y=A sin(x+)(A.0, 0)的圖象變換規(guī)則。參數(shù)A、變換的順序不同時(shí),變換的規(guī)則不同,容易發(fā)生混淆。教學(xué)過程中讓學(xué)生自主探索,加強(qiáng)對(duì)變換順序的理解,正是為了攻克難點(diǎn)。4、課時(shí)安排本節(jié)內(nèi)容將安排1課時(shí)時(shí)間完成教學(xué)。二、教學(xué)目標(biāo)知識(shí)目標(biāo):通過圖象變換和五點(diǎn)法作出函數(shù)y=Asin(x+)(A0,0)的圖象;函數(shù)y=A sin(x+)(A.0, 0)的性質(zhì);理解并掌握函數(shù)y=A sin(x+)(A.0, 0)的圖象變換規(guī)則。能力目標(biāo):讓學(xué)生觀察并分析函數(shù)y=Asin(x+) ,(A.0, 0)的圖象,分析A、的變化對(duì)函數(shù)圖象的形狀和位置的影響,總結(jié)出圖象的基本變換規(guī)則。培養(yǎng)學(xué)生化歸和數(shù)形結(jié)合的思想,訓(xùn)練學(xué)生自主地獲取知識(shí)的能力,以及在所學(xué)知識(shí)的基礎(chǔ)上進(jìn)行再創(chuàng)新的能力。情感目標(biāo):激發(fā)學(xué)生的好奇心,刺激學(xué)生的探究心理,培養(yǎng)學(xué)生的學(xué)習(xí)積極性,提高對(duì)數(shù)學(xué)的興趣。理論聯(lián)系實(shí)際,使學(xué)生受到唯物主義觀點(diǎn)的教育。三、教法與學(xué)法分析1.教法分析本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)建構(gòu)主義學(xué)習(xí)理論。采用探究式教學(xué)方法,創(chuàng)設(shè)情景,通過多媒體課件的直觀演示,啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)問題、聯(lián)想類比,同時(shí)讓學(xué)生動(dòng)手畫圖來驗(yàn)證猜想。通過點(diǎn)化問題,引導(dǎo)學(xué)生觀察、分析圖象的變化,自主地總結(jié)出變化規(guī)律,有利于突破教學(xué)難點(diǎn),提高學(xué)生的分析歸納能力。2.學(xué)法指導(dǎo)本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,學(xué)生在探究的過程中被激發(fā)起好奇心和創(chuàng)新意識(shí),通過觀察分析、聯(lián)想類比、總結(jié)歸納的方法掌握教學(xué)目標(biāo)。四、教學(xué)過程本節(jié)內(nèi)容的教學(xué)過程如下:1.創(chuàng)設(shè)情景2.對(duì)比探索3.探究規(guī)律4.歸納小結(jié)5.應(yīng)用新知6.課堂小結(jié)7.布置作業(yè)。教學(xué)環(huán)節(jié)教學(xué)程序設(shè)計(jì)意圖1.創(chuàng)設(shè)情景,引發(fā)興趣在物理中,彈簧振子位移y與時(shí)間x的關(guān)系、交流電的電流y與時(shí)間x的關(guān)系等都是形如y=Asin(x+)(其中A、都是常數(shù))的函數(shù)。(演示課件)設(shè)問:這個(gè)圖象與y=sin x的圖象有什么關(guān)系?若將函數(shù)y=sin x的圖象變換得到y(tǒng)=Asin(x+)的圖象,應(yīng)采用怎樣的方法和步驟? 從學(xué)生已熟悉的彈簧振子的“位移時(shí)間”圖象來引發(fā)設(shè)問,使新課引入顯得自然、易于接受。讓學(xué)生明確理論是從實(shí)踐中來,又回到實(shí)踐中去。使學(xué)生學(xué)習(xí)研究目的性更加明確。2.對(duì)比探索,分析歸納例1、利用五點(diǎn)法在同一坐標(biāo)系中作出y=2sinx與y=sinx的簡圖,并指出它們的圖象與y=sinx的關(guān)系。(引導(dǎo)學(xué)生得出規(guī)律)例2、利用五點(diǎn)法在同一坐標(biāo)系中作出=sin2x與y=sinx的簡圖,并指出它們的圖象與y=sinx的關(guān)系。(引導(dǎo)學(xué)生得出規(guī)律)例3、利用五點(diǎn)法在同一坐標(biāo)系中作出y=sin(x+)與y=sin(x-)的簡圖并指出它們的圖象與y=sinx的關(guān)系。(引導(dǎo)學(xué)生得出規(guī)律)以這3個(gè)例子來學(xué)習(xí)三種基本變換,引導(dǎo)學(xué)生觀察變換過程中的不變量,得出結(jié)論。必要時(shí)由老師給予適當(dāng)?shù)奶崾竞蛦l(fā)。(讓學(xué)生大膽嘗試,使學(xué)生對(duì)函數(shù)圖象有一個(gè)初步的感性認(rèn)識(shí)。)3.探究規(guī)律,掌握新知例4、作出函數(shù)y=3sin(2x+)的簡圖,并指出它的圖象與y=sinx的關(guān)系。(引導(dǎo)學(xué)生揭示規(guī)律)變換方法有兩種:1)先平移變換,再周期變換,最后作振幅變換。2)先周期變換,再平移變換,最后作振幅變換。學(xué)生在碰到這個(gè)問題時(shí),很感興趣,因?yàn)樗屠?很相似,因此可能會(huì)猜想“左移個(gè)單位長度”,這時(shí)引導(dǎo)學(xué)生通過“五點(diǎn)法” 作圖驗(yàn)證,就會(huì)發(fā)現(xiàn)猜想是錯(cuò)誤的。不過這不要緊,這樣更加能激發(fā)學(xué)生的好奇心和求知欲,于是,很快掀學(xué)習(xí)的高潮,從而給學(xué)生搭建起一個(gè)實(shí)踐探究的平臺(tái)。4.歸納小結(jié),展示規(guī)律 總結(jié)出函數(shù)y=Asin(x+)(A0, 0)的圖象與y=sinx的圖象的關(guān)系。 指明y=Asin(x+),(A.0, 0)x0,+在物理學(xué)中的具體應(yīng)用并指出A、x+、相應(yīng)的名稱。 讓學(xué)生認(rèn)真總結(jié),在探索與交流中去體會(huì)不同的變化順序?qū)ψ兓?guī)則的影響。展示函數(shù)y=A sin(x+)(A.0, 0)的圖象變換規(guī)則,攻克難點(diǎn)。引導(dǎo)學(xué)生對(duì)所學(xué)的知識(shí)、數(shù)學(xué)思想方法進(jìn)行小結(jié)。引導(dǎo)學(xué)生對(duì)學(xué)習(xí)過程進(jìn)行反思,為今后的學(xué)習(xí)中進(jìn)行有效調(diào)控打下良好的基礎(chǔ)。5.應(yīng)用新知,當(dāng)堂練習(xí)完成P67的練習(xí)當(dāng)堂練習(xí)有利于鞏固知識(shí),強(qiáng)化學(xué)的效果。6、課堂小結(jié)以不同順序變換A、的方法用五點(diǎn)法和變換關(guān)系作函數(shù)y=Asin(x+)的圖象鞏固學(xué)習(xí)效果,強(qiáng)調(diào)學(xué)習(xí)重點(diǎn)7.布置作業(yè),鞏固提高習(xí)題4.9題2、3、4、5思考:用示意圖表示:將y=2sin(3x-)的圖象變換為y=sinx 的圖象的過程。布置作業(yè)有彈性,避免一刀切。使學(xué)有余力的學(xué)生進(jìn)一步訓(xùn)練逆向思維,使知識(shí)掌握更加深刻。五、板書設(shè)計(jì):函數(shù)y=Asin(x+)的圖象例1 例2例3例4反函數(shù)教材:人民教育出版社全日制普通高級(jí)中學(xué)教科書(必修)數(shù)學(xué)數(shù)學(xué)第一冊(cè)(上) 第二章第4節(jié)一、教材分析1.教學(xué)內(nèi)容 本節(jié)教材內(nèi)容涉及反函數(shù)的概念,反函數(shù)的求法。函數(shù)從本質(zhì)上講是函數(shù),原函數(shù)與反函數(shù)互為反函數(shù),它們的圖象關(guān)于直線y=x對(duì)稱。2.本節(jié)教材地位與重要性“反函數(shù)”一節(jié)課是高中數(shù)學(xué)第一冊(cè)的重要內(nèi)容。這一節(jié)課與函數(shù)的基本概念有著緊密的聯(lián)系,通過對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生接受、理解反函數(shù)的概念并學(xué)會(huì)反函數(shù)的求法,又可使學(xué)生加深對(duì)函數(shù)基本概念的理解,還為日后反三角函數(shù)的教學(xué)做好準(zhǔn)備,起到承上啟下的重要作用。3.重點(diǎn)與難點(diǎn) 重點(diǎn):反函數(shù)的概念及反函數(shù)的求法。理解反函數(shù)概念并求出函數(shù)的反函數(shù)是高一數(shù)學(xué)教學(xué)的重要內(nèi)容,這建立在對(duì)函數(shù)概念的真正理解的基礎(chǔ)上,必須使學(xué)生對(duì)于函數(shù)的基本概念有清醒的認(rèn)識(shí)。 難點(diǎn):反函數(shù)概念的接受與理解。學(xué)生對(duì)于反函數(shù)的來歷、反函數(shù)與原函數(shù)間的關(guān)系都容易產(chǎn)生錯(cuò)誤的認(rèn)識(shí),必須使學(xué)生認(rèn)清反函數(shù)的實(shí)質(zhì)就是函數(shù)這一本質(zhì)問題,才能使學(xué)生接受概念并對(duì)反函數(shù)的存在有正確的認(rèn)識(shí)。教學(xué)中復(fù)習(xí)函數(shù)概念,進(jìn)而引出反函數(shù)概念,就是為突破難點(diǎn)做準(zhǔn)備。4. 課時(shí)安排本節(jié)內(nèi)容將安排1課時(shí)時(shí)間完成教學(xué)。二、教學(xué)目標(biāo) 知識(shí)目標(biāo):理解反函數(shù)的概念,并能判定一個(gè)函數(shù)是否存在反函數(shù); 掌握反函數(shù)的求法,并能理解原函數(shù)和反函數(shù)之間的內(nèi)在聯(lián)系;能力目標(biāo):通過觀察、分析、抽象、推理得出數(shù)學(xué)規(guī)律,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí)。通過作圖,加強(qiáng)學(xué)生對(duì)數(shù)形結(jié)合的數(shù)學(xué)思想的理解,訓(xùn)練學(xué)生自主地獲取知識(shí)的能力,和在所學(xué)知識(shí)的基礎(chǔ)上進(jìn)行再創(chuàng)新的能力。 情感目標(biāo):使學(xué)生樹立對(duì)立統(tǒng)一的辯證思維的觀點(diǎn)。三、教法與學(xué)法分析1.教法分析根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,將采取引導(dǎo)發(fā)現(xiàn)式教學(xué)方法并充分發(fā)揮電腦多媒體的輔助教學(xué)作用。引導(dǎo)發(fā)現(xiàn)法作為一種啟發(fā)式教學(xué)方法,體現(xiàn)了認(rèn)知心理學(xué)的基本理論。教學(xué)過程中,教師采用點(diǎn)撥的方法,啟發(fā)學(xué)生通過主動(dòng)思考、動(dòng)手操作來達(dá)到對(duì)知識(shí)的“發(fā)現(xiàn)”和接受,進(jìn)而完成知識(shí)的內(nèi)化,使書本的知識(shí)成為自己的知識(shí)。課堂不再成為“一言堂”,學(xué)生也不會(huì)變成教師注入知識(shí)的“容器”。 電腦多媒體以聲音、動(dòng)畫、影像等多種形式強(qiáng)化對(duì)學(xué)生感觀的刺激,這一點(diǎn)是粉筆和黑板所不能比擬的,采取這種形式,可以極大提高學(xué)生的學(xué)習(xí)興趣,加大一堂課的信息容量,使教學(xué)目標(biāo)更完美地體現(xiàn)。另外,電腦軟件具有良好的交互性,可以將教師的思路和策略以軟件的形式來體現(xiàn),更好地為教學(xué)服務(wù)。2.學(xué)法指導(dǎo) “授人以魚,不如授人以漁”,在教學(xué)過程中,不但要傳授學(xué)生課本知識(shí),還要培養(yǎng)學(xué)生主動(dòng)觀察、主動(dòng)思考、自我發(fā)現(xiàn)的學(xué)習(xí)能力,增強(qiáng)學(xué)生的綜合素質(zhì),從而達(dá)到教學(xué)的終極目標(biāo)。教學(xué)中,教師創(chuàng)設(shè)疑問,學(xué)生想辦法解決疑問,通過教師的啟發(fā)點(diǎn)撥,在積極的雙邊活動(dòng)中,學(xué)生找到了解決疑難的方法。整個(gè)過程貫穿“懷疑”“思索”“發(fā)現(xiàn)”“解惑”四個(gè)環(huán)節(jié),學(xué)生隨時(shí)對(duì)所學(xué)知識(shí)產(chǎn)生有意注意思想上經(jīng)歷了從肯定到否定、又從否定到肯定的辨證思維過程,符合學(xué)生認(rèn)知水平,培養(yǎng)了學(xué)習(xí)能力。四、教學(xué)過程在新課導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,力求發(fā)揮學(xué)生自我發(fā)現(xiàn)的能力,突出學(xué)生的教學(xué)主體地位,以啟發(fā)、引導(dǎo)為教師的責(zé)任。教學(xué)環(huán)節(jié)教學(xué)程序設(shè)計(jì)意圖1.新課導(dǎo)入物體做勻速直線運(yùn)動(dòng),位移s是時(shí)間t的函數(shù),即s=vt(v是常量)。反過來,時(shí)間t是位移s的函數(shù),即t=s/v。例如,由函數(shù)y=2x+6(xR)可以得到x=y/2-3,對(duì)于y在R中的任何一個(gè)值,通過x=y/2-3,x在R中都有唯一的值和它對(duì)應(yīng),即x是y的函數(shù)。引出反函數(shù)。這樣的引入方式,抓住了反函數(shù)概念的實(shí)質(zhì),確保學(xué)生不會(huì)產(chǎn)生概念上的偏差。此外,可以使學(xué)生明白新知識(shí)來源于舊知識(shí),促使學(xué)生主動(dòng)運(yùn)用函數(shù)的研究方法去學(xué)習(xí)反函數(shù),為順利完成教學(xué)任務(wù)做好思維上的準(zhǔn)備。2.提煉新知在導(dǎo)入的基礎(chǔ)上,給出反函數(shù)的具體概念。進(jìn)一步深化對(duì)概念的理解,設(shè)置疑問:(1)反函數(shù)是不是函數(shù);(2)反函數(shù)有沒有三要素?如何確定?(多媒體課件展示)引導(dǎo)學(xué)生思索,使學(xué)生認(rèn)識(shí)到:反函數(shù)也是函數(shù),其定義域是原函數(shù)的值域,對(duì)應(yīng)法則可由原函數(shù)得到,值域則是原函數(shù)的定義域。函數(shù)y=f(x)與函數(shù)y=f-1(x)互為反函數(shù)例1 求下列函數(shù)的反函數(shù)。(1)y=3x-1 (xR);(2)y=x3+1 (xR);(3)+1 (x0);(4)y=(2x+3)/(x-1)(xR且x1).通過實(shí)例講解反函數(shù)的求法,特別強(qiáng)調(diào):注意反函數(shù)的定義域?qū)訉由钊耄沂痉春瘮?shù)的定義,逐步加深學(xué)生對(duì)反函數(shù)的認(rèn)識(shí)。通過實(shí)例,講解如何求一個(gè)函數(shù)的反函數(shù),達(dá)到突破重點(diǎn)、難點(diǎn)的目的。3.應(yīng)用拓展例2 求函數(shù)y=3x-2(xR)的反函數(shù),并且畫出原來的函數(shù)和它的反函數(shù)的圖象。例3 求函數(shù)y=x(xR)的反函數(shù),并且畫出原來的函數(shù)和它的反函數(shù)的圖象。多媒體課件展示求解過程和圖象,引導(dǎo)學(xué)生觀察分析,揭示原函數(shù)與反函數(shù)圖象間的關(guān)系:兩者關(guān)于直線y=x對(duì)稱。通過函數(shù)圖像來研究問題,直觀形象,符合學(xué)生的認(rèn)知規(guī)律,加深了學(xué)生對(duì)反函數(shù)的認(rèn)識(shí)。4.課堂練習(xí)完成P63的練習(xí)題1-6,并講解。當(dāng)堂練習(xí)有利于鞏固知識(shí),強(qiáng)化學(xué)的效果,并且有利于及時(shí)發(fā)現(xiàn)學(xué)生存在的問題。5.歸納小結(jié)反函數(shù)的概念;反函數(shù)與原函數(shù)的關(guān)系:兩者互為反函數(shù),兩者的圖象關(guān)于直線y=x對(duì)稱。鞏固學(xué)習(xí)效果,強(qiáng)調(diào)學(xué)習(xí)重點(diǎn)。6.布置作業(yè)習(xí)題2.4題1、2、3,題4、5、6選做。思考:已知函數(shù)y=f(x),(xA)是增函數(shù),問:反函數(shù)y=f-1(x)單調(diào)性如何?圖象中如何反映?布置作業(yè)有彈性,避免一刀切。使學(xué)有余力的學(xué)生進(jìn)一步訓(xùn)練逆向思維,使知識(shí)掌握更加深刻。五、板書設(shè)計(jì)反函數(shù)例1例2例3等比數(shù)列的前n項(xiàng)和一、教材分析1.教學(xué)內(nèi)容等比數(shù)列的前n項(xiàng)和是人教版高中數(shù)學(xué)第一冊(cè)上第三章第五節(jié)的內(nèi)容。它的主要內(nèi)容是首先通過具體例子說明如何求等比數(shù)列前n項(xiàng)和,然后推導(dǎo)出等比數(shù)列的前n項(xiàng)和公式,最后舉例說明公式的運(yùn)用。2.教學(xué)內(nèi)容的地位和作用數(shù)列在整個(gè)中學(xué)數(shù)學(xué)教學(xué)內(nèi)容中,處于一個(gè)知識(shí)匯合點(diǎn)的地位,很多知識(shí)都與數(shù)列有著密切聯(lián)系,過去學(xué)過的數(shù)、式、方程、函數(shù)、簡易邏輯等知識(shí)在這一章均得到了較為充分的應(yīng)用,而學(xué)習(xí)數(shù)列又為后面學(xué)習(xí)數(shù)列與函數(shù)的極限等內(nèi)容作了鋪墊,并且與前面學(xué)習(xí)的函數(shù)知識(shí)有著密切的聯(lián)系。它的公式推導(dǎo)過程中所滲透的遞推、類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)生活中必備的數(shù)學(xué)素養(yǎng),且在現(xiàn)實(shí)生活中有著廣泛的實(shí)際運(yùn)用。3.教學(xué)重點(diǎn)難點(diǎn)分析重點(diǎn):等比數(shù)列的前n項(xiàng)和公式及其應(yīng)用。等比數(shù)列的前n項(xiàng)和公式在實(shí)際生活中有著廣泛的應(yīng)用,這一節(jié)的內(nèi)容貫徹了理論聯(lián)系實(shí)際的思想,有利于提高學(xué)生的觀察、思考和實(shí)踐能力。難點(diǎn):等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)。在推導(dǎo)過程中第一次運(yùn)用了錯(cuò)位相減法,根據(jù)高一學(xué)生的認(rèn)知水平,這一點(diǎn)理解起來有一定的難度。4.課時(shí)安排等比數(shù)列的前n項(xiàng)和共安排2課時(shí),第1課時(shí)主要內(nèi)容是等比數(shù)列前n項(xiàng)和的公式的推導(dǎo),并能靈活運(yùn)用公式解決問題。第2課時(shí)主要內(nèi)容是通過講解典型例子深化知識(shí),加強(qiáng)學(xué)生運(yùn)用公式的靈活性。二、教學(xué)目標(biāo)分析結(jié)合教材和新課標(biāo),制定如下的教學(xué)目標(biāo):1、知識(shí)目標(biāo):理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)過程,掌握等比數(shù)列的前n項(xiàng)和公式及其運(yùn)用。2、能力目標(biāo):通過推導(dǎo)公式,提高學(xué)生的建模意識(shí)及探究問題、分析問題與解決問題的能力,體會(huì)公式探求過程中從特殊到一般的思維方式,學(xué)習(xí)推導(dǎo)過程中運(yùn)用到的遞推方法,體會(huì)方程思想、分類討論思想及轉(zhuǎn)化思想。3、情感目標(biāo):通過實(shí)際生活例子,探索并推導(dǎo)出公式,激發(fā)學(xué)生的求知欲,培養(yǎng)學(xué)生大膽嘗試、勇于探索的思維品質(zhì)。另外通過本節(jié)的學(xué)習(xí),使學(xué)生體會(huì)到數(shù)學(xué)與現(xiàn)實(shí)生活之間的聯(lián)系,感受學(xué)習(xí)數(shù)學(xué)的意義所在。三、教法學(xué)法分析 (一)教法分析以學(xué)生為主,采用啟發(fā)式教學(xué)方式,教師根據(jù)具體的例子,引導(dǎo)學(xué)生思考,自主分析問題,然后由師生共同歸納總結(jié),推導(dǎo)出公式,學(xué)生掌握公式之后再將其運(yùn)用到實(shí)際的例子中去。公式的學(xué)習(xí)采用這種方式,便于學(xué)生的理解和掌握。另外,還可利用多媒體輔助教學(xué)。(二)學(xué)法分析學(xué)情分析:高一的學(xué)生具備了一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但其探究能力還有待提高。同時(shí)已經(jīng)學(xué)習(xí)并掌握了等差數(shù)列的前n項(xiàng)和的公式以及對(duì)等比數(shù)列已有初步的認(rèn)識(shí),已具備良好的知識(shí)基礎(chǔ)。類比和對(duì)比法:等比數(shù)列前n項(xiàng)和的公式與之前所學(xué)的等差數(shù)列前n項(xiàng)和公式都是在首先建立方程的基礎(chǔ)上進(jìn)行推導(dǎo)而得的,將二者比較起來學(xué)習(xí),可以進(jìn)一步認(rèn)識(shí)他們之間的區(qū)別和聯(lián)系,以加深對(duì)等比數(shù)列的前n項(xiàng)和的理解。練習(xí)鞏固法:通過各種例子,練習(xí)鞏固對(duì)公式的掌握。學(xué)生的學(xué)習(xí)過程應(yīng)該為“具體抽象具體”,從感性認(rèn)知到理性思維,從具體到抽象是歸納總結(jié)的過程,從抽象到具體是運(yùn)用推廣過程,學(xué)生應(yīng)該遵循這一規(guī)律,循序漸進(jìn)的學(xué)習(xí)。四、教學(xué)程序1、知識(shí)回顧等比數(shù)列的通項(xiàng)公式。2、設(shè)立情景,引入課題引例:小明的爸爸每半月給小明300元的生活費(fèi),一天小明回家告訴爸爸,他以后不再一次性拿300元,改成第一天拿1分錢,第二天拿2分錢,第三天拿4分錢以后每天都拿前一天的2倍,請(qǐng)問如果你是小明,你會(huì)這樣做嗎?【設(shè)計(jì)意圖:“生活費(fèi)”這一詞是學(xué)生在生活中經(jīng)常會(huì)接觸到的,引入這一詞能立刻激發(fā)學(xué)生的興趣,促進(jìn)學(xué)生積極學(xué)習(xí),培養(yǎng)學(xué)生勇于探索的求知精神。】3、 分析推導(dǎo),得出公式根據(jù)引例,得到數(shù)列1,2,4,214,這實(shí)際上是求以1為首項(xiàng)、2為公比的等比數(shù)列的前15項(xiàng)和,即: S15124214 等式兩邊乘以公比2得到: 2S15248215 將錯(cuò)位,與對(duì)應(yīng),得到方程組:S15124214 2S15 248215 解方程組得到:S15215 1,則S15=32767.說明:這一部分的推導(dǎo)由老師講授給學(xué)生,在講授過程中要注意引導(dǎo)學(xué)生積極思考:為什么要將等式兩邊同時(shí)乘以2?那為什么不同時(shí)乘以3呢?【設(shè)計(jì)意圖:在教學(xué)過程中滲透遞推、方程、轉(zhuǎn)化的數(shù)學(xué)思想,使學(xué)生體會(huì)數(shù)學(xué)思想的奇妙,促發(fā)學(xué)生進(jìn)行進(jìn)一步研究和探索。】 由以上對(duì)特殊例題的學(xué)習(xí)轉(zhuǎn)變到對(duì)一般公式的推導(dǎo):設(shè)有等比數(shù)列:a1,a2,a3,,an其前n項(xiàng)和為:Sna1+a2+a3+an 根據(jù)等比數(shù)列的通項(xiàng)公式可以將公式改寫成: Sna1+a1q+a1q2+a1qn-1 說明:學(xué)生學(xué)習(xí)了引例之后,已經(jīng)可以通過類比列出推導(dǎo)過程,所以老師在講授到這里時(shí),可以將接下來的推導(dǎo)過程留給學(xué)生自己做。得到等比數(shù)列的前n項(xiàng)和的公式為:q1時(shí),q1時(shí) Snna1 【設(shè)計(jì)意圖:由特殊向一般轉(zhuǎn)化,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想。通過“老師引導(dǎo)和學(xué)生自主學(xué)習(xí)”的方式推導(dǎo)出公式,可較好地培養(yǎng)學(xué)生的動(dòng)手能力和創(chuàng)新精神,并且能加強(qiáng)學(xué)生對(duì)知識(shí)的理解。】 4、 舉例分析講解教材例2:某商場第1年銷售計(jì)算機(jī)5000臺(tái),如果平均每年的銷售量比上一年增加10%,那么從第1年起,約幾年內(nèi)可使總銷售量達(dá)到30000臺(tái)(保留到個(gè)位)?說明:此題由教師引導(dǎo)學(xué)生完成。本例中解題的關(guān)鍵點(diǎn)在于判定出題目所給的信息分別對(duì)應(yīng)公式中的哪一項(xiàng),特別提醒學(xué)生注意“平均每年的銷售量比上一年增加10%”,表示的是q為1+10%而不是10%,要善于將文字條件轉(zhuǎn)換為數(shù)字條件。【設(shè)計(jì)意圖:此題的題意與實(shí)際相聯(lián)系,解決除了可以使學(xué)生對(duì)公式更加熟悉,還可以培養(yǎng)學(xué)生在實(shí)際生活中去分析問題解決問題的能力。】5、總結(jié)歸納,課堂練習(xí)總結(jié)以下的知識(shí):請(qǐng)同學(xué)們回憶推導(dǎo)公式的過程,并自己歸納在推導(dǎo)過程中運(yùn)用到哪些數(shù)學(xué)方法。等比數(shù)列的前n項(xiàng)和公式。課堂練習(xí):P128,2.(1)和 P129,3.(1)抽學(xué)生在黑板上解答,以查看學(xué)生是否掌握了本節(jié)的重點(diǎn)知識(shí),并及時(shí)發(fā)現(xiàn)學(xué)生存在的問題和疑點(diǎn)。同時(shí)其他的同學(xué)做第2.(2)題,并隨機(jī)抽查一名學(xué)生的完成情況,以達(dá)到監(jiān)督其他學(xué)生的目的。6、作業(yè)布置P129習(xí)題3.5的1、2、4題。思考:等差數(shù)列等比數(shù)列a1dnanSna1qnanSn1/21/281/21/28272/38272/38-2-96-63-2-96-63 【設(shè)計(jì)意圖:P129習(xí)題3.5的1、2、4題,1題可以鞏固基礎(chǔ)知識(shí),2題4題,理論聯(lián)系實(shí)際,培養(yǎng)學(xué)生的實(shí)踐思維。給出思考題的目的一方面是讓學(xué)生回憶等差數(shù)列和等比數(shù)列的通項(xiàng)公式和各自前n項(xiàng)和的公式并對(duì)二者進(jìn)行類比,可加強(qiáng)以及并深化對(duì)知識(shí)的理解;另一方面讓學(xué)生熟悉通過建立方程來解決問題的方法,體會(huì)方程思想的妙處。】 7、板書設(shè)計(jì)課題:等比例數(shù)列的前n項(xiàng)和引例公式推導(dǎo)過程公式學(xué)生練習(xí)第2.(1)題 第3.(1)題 拋物線的簡單幾何性質(zhì)(第二冊(cè)上)一、教材分析(一)教學(xué)內(nèi)容拋物線的簡單幾何性質(zhì)是人教版高中數(shù)學(xué)(必修)第二冊(cè)上第八章的第6節(jié)的內(nèi)容。本節(jié)課的主要內(nèi)容是探究拋物線的簡單幾何性質(zhì)及應(yīng)用。通過對(duì)拋物線的簡單幾何性質(zhì)進(jìn)行分析,并利用這些性質(zhì)來解決簡單的幾何問題。(二)教材的地位和作用本節(jié)課是在學(xué)習(xí)了拋物線的定義及其標(biāo)準(zhǔn)方程的基礎(chǔ)上,系統(tǒng)地按照拋物線方程來研究拋物線的簡單幾何性質(zhì),該內(nèi)容是高中數(shù)學(xué)的重要內(nèi)容,也是高考的重點(diǎn)與熱點(diǎn)內(nèi)容。其中,蘊(yùn)含的數(shù)形結(jié)合思想也是高中數(shù)學(xué)的重要思想。學(xué)習(xí)本節(jié)課的內(nèi)容能夠較好地培養(yǎng)學(xué)生抽象概括能力,觀察分析能力和探索求知的精神。(三)課時(shí)安排本節(jié)內(nèi)容安排1課時(shí)完成教學(xué)。二、教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)的理念以及對(duì)教材的分析和高中學(xué)生的認(rèn)知規(guī)律,本課節(jié)的教學(xué)目標(biāo)確定為:知識(shí)目標(biāo):掌握拋物線的簡單幾何性質(zhì),理解拋物線方程與拋物線曲線間互逆推導(dǎo)的邏輯關(guān)系及利用數(shù)形結(jié)合解決實(shí)際問題,初步學(xué)習(xí)利用方程研究曲線性質(zhì)的方法。能力目標(biāo):讓學(xué)生經(jīng)歷知識(shí)產(chǎn)生與形成的過程,培養(yǎng)學(xué)生觀察、分析、邏輯推理、理性思維的能力,以及對(duì)研究方法的思想滲透及運(yùn)用數(shù)形結(jié)合思想解決問題的能力。情感目標(biāo):通過數(shù)與形的辯證統(tǒng)一,對(duì)學(xué)生進(jìn)行辯證唯物主義教育,培養(yǎng)學(xué)生認(rèn)真參與、積極交流的主體意識(shí),鍛煉學(xué)生善于發(fā)現(xiàn)問題的規(guī)律和及時(shí)解決問題的態(tài)度。三、難重點(diǎn)分析重點(diǎn):拋物線的簡單幾何性質(zhì)。只有在完全掌握拋物線的簡單幾何性質(zhì)的基礎(chǔ)上,才能自如地解決相關(guān)幾何問題。難點(diǎn):拋物線的簡單幾何性質(zhì)的應(yīng)用。要求能靈活地運(yùn)用拋物線的性質(zhì)來解決簡單的幾何問題。四、教法與學(xué)法分析(一)教法分析本節(jié)課以啟發(fā)式教學(xué)為主,綜合運(yùn)用演示法、講授法、討論法、有指導(dǎo)的發(fā)現(xiàn)法及練習(xí)法等教學(xué)方法。先通過多媒體動(dòng)畫演示,創(chuàng)設(shè)問題情境;在拋物線簡單幾何性質(zhì)的教學(xué)過程中,通過多媒體演示,有指導(dǎo)的發(fā)現(xiàn)問題,然后進(jìn)行討論、探究、總結(jié)、運(yùn)用,最后通過練習(xí)加以鞏固提高。(二)學(xué)法指導(dǎo)根據(jù)本節(jié)課特點(diǎn),結(jié)合教法和學(xué)生的實(shí)際,在多媒體輔助教學(xué)的基礎(chǔ)上,主要采用“復(fù)習(xí)類比探索應(yīng)用”的探究式學(xué)習(xí)方法,增加學(xué)生參與的機(jī)會(huì)。此外,還應(yīng)積極運(yùn)用類比聯(lián)想、總結(jié)歸納的學(xué)習(xí)方法,使學(xué)生在掌握知識(shí)形成技能的同時(shí),培養(yǎng)邏輯推理、理性思維的能力及科學(xué)的學(xué)習(xí)方法,增強(qiáng)自信心。五、教學(xué)過程本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。(一)復(fù)習(xí)引入1.拋物線的定義;2.拋物線的標(biāo)準(zhǔn)方程及主要參數(shù)。(二)類比聯(lián)想通過前面學(xué)習(xí)的橢圓、雙曲線的幾何性質(zhì),揭發(fā)學(xué)生積極探究拋物線的幾何性質(zhì)。提出問題(引出問題、發(fā)現(xiàn)問題,激疑導(dǎo)入):我們已經(jīng)學(xué)習(xí)了橢圓及雙曲線的幾何性質(zhì),請(qǐng)同學(xué)們回憶一下,是從哪幾個(gè)方面研究的?橢圓有焦點(diǎn),那拋物線有沒有焦點(diǎn)呢?雙曲線有漸近線,那拋物線有沒有漸近線呢?【設(shè)計(jì)意圖:這一環(huán)節(jié)通過復(fù)習(xí)橢圓及雙曲線的幾何性質(zhì),從而引出課題拋物線的幾何性質(zhì),促使學(xué)生進(jìn)行類比聯(lián)想。】(三)師生互動(dòng),探究問題首先,提示學(xué)生觀察拋物線的曲線,類比橢圓及雙曲線的幾何性質(zhì),依次引入拋物線的范圍、對(duì)稱性、頂點(diǎn)、離心率的定義(圖1)。介紹拋物線的開口方向:拋物線的一個(gè)標(biāo)準(zhǔn)方程y2=2px的頂點(diǎn)在坐標(biāo)原點(diǎn),一次項(xiàng)的變量x,則x軸是拋物線的對(duì)稱軸。一次項(xiàng)的系數(shù)的符號(hào)決定拋物線的開口方向,正號(hào)決定開口方向和對(duì)稱軸所在坐標(biāo)軸的方向相同,負(fù)號(hào)決定開口方向和對(duì)稱軸所在坐標(biāo)軸方向相反。然后,給出學(xué)生其他拋物線的方程y2=-2px,x2=2py,x2=-2py, 讓學(xué)生思考其開口方向。圖1接著,繼續(xù)引導(dǎo)學(xué)生思考在拋物線方程中,參數(shù)p對(duì)圖象的影響。通過多媒體演示不同P值下拋物線的形狀,學(xué)生可直觀看到p值越大,拋物線的開口也越大。學(xué)生可自己得出結(jié)論:對(duì)于一個(gè)拋物線方程,同一個(gè)x值的情況下,p值大,|y|也大。給學(xué)生提供不同拋物線的圖象,引導(dǎo)學(xué)生積極思考,分析其他拋物線是否也具有相同的性質(zhì)。 圖2 【設(shè)計(jì)意圖:這樣的設(shè)計(jì)是以提高學(xué)生解決問題的能力為落腳點(diǎn),讓學(xué)生從事主動(dòng)的觀察,猜測,推理,實(shí)驗(yàn),交流等活動(dòng),鼓勵(lì)學(xué)生發(fā)表不同意見,使學(xué)生在解決問題的活動(dòng)中不知不覺的受到數(shù)學(xué)思想方法的熏陶和感染,從而進(jìn)一步體驗(yàn)到解決問題策略的多樣性,培養(yǎng)實(shí)踐能力和創(chuàng)新精神,并在分析比較中,感悟和尋找解決問題的最佳策略。】(四)即時(shí)訓(xùn)練,鞏固新知1.例題講解例1 已知拋物線關(guān)于x軸為對(duì)稱軸,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過點(diǎn)M(2,-2) ,求它的標(biāo)準(zhǔn)方程。說明:由已知條件求拋物線的標(biāo)準(zhǔn)方程時(shí),首先要根據(jù)已知條件確定拋物線標(biāo)準(zhǔn)方程的類型,再求出方程中的參數(shù)p。這道題由老師帶領(lǐng)學(xué)生一起分析、求解,并引導(dǎo)學(xué)生分析解題思路。例2 探照燈反射鏡的軸截面是拋物線的一部分,光源位于拋物線的交點(diǎn)處。已知燈口圓的直徑為60cm,燈深40cm,求拋物線的標(biāo)準(zhǔn)方程和焦點(diǎn)的位置。說明:例2充分展現(xiàn)了理論結(jié)合實(shí)際的重要思想,同時(shí)激發(fā)學(xué)生的求知欲望。這道題先由學(xué)生自己思考,然后由老師點(diǎn)評(píng)。例3 正三角形的一個(gè)頂點(diǎn)位于坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線y2=2px(p0)上,求這個(gè)正三角形的邊長。說明:這道題有一定的典型性,通過這道例題,可以幫助學(xué)生進(jìn)一步掌握坐標(biāo)法。這個(gè)題目對(duì)于學(xué)生來說,求邊長并不困難,但是他們往往直觀上承認(rèn)拋物線與三角形的對(duì)稱軸是公共的,而忽略了它的證明。教學(xué)時(shí),要提醒學(xué)生注意這一點(diǎn)。這個(gè)證明有一定的難度,要注意分析。 完成之后老師引導(dǎo)學(xué)生對(duì)其中涉及到的知識(shí)點(diǎn)進(jìn)行概括。2.課堂練習(xí)(1)求適合下列條件的拋物線方程:頂點(diǎn)在原點(diǎn),關(guān)于x軸堆成,并且經(jīng)過點(diǎn)M(5,-4);頂點(diǎn)在原點(diǎn),焦點(diǎn)是F(0,5);頂點(diǎn)在原點(diǎn),準(zhǔn)線是x=4;焦點(diǎn)是F(0,-8),準(zhǔn)線是y=8.(2)在同一坐標(biāo)系中,畫出下列拋物線的草圖:y2=1/2x y2=x y2=2x y2=4x比較這些圖形,說明拋物線開口的大小與方程中x的系數(shù)有怎樣的關(guān)系。分別讓學(xué)生上來板演其求解過程,然后老師分析指正。【設(shè)計(jì)意圖:在對(duì)知識(shí)點(diǎn)有一定的了解之后,及時(shí)的安排課堂練習(xí)達(dá)到鞏固知識(shí)的目的。】(四)總結(jié)反思,提高認(rèn)識(shí)由學(xué)生自主歸納,總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容,教師加以補(bǔ)充說明。(1) 拋物線的簡單幾何性質(zhì);(2) 求拋物線的問題時(shí)要緊扣定義及其性質(zhì)。 【設(shè)計(jì)意圖:知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。】(五)作業(yè)布置教材P123習(xí)題1、2、4。(六)板書設(shè)計(jì)課題:拋物線的 簡單幾何性質(zhì)1.復(fù)習(xí)拋物線的定義、標(biāo)準(zhǔn)方程及相關(guān)參數(shù) 2.推導(dǎo)拋物線簡單幾何性質(zhì)的過程3.例題講解圖示區(qū) 學(xué)生板演以上就是我說課的內(nèi)容,如有不足之處,懇請(qǐng)?jiān)u委老師批評(píng)指正。謝謝!曲線和方程一、教材分析(一)教學(xué)內(nèi)容曲線和方程是人教版高中數(shù)學(xué)(必修)第二冊(cè)上第七章直線和圓的方程第5節(jié)的內(nèi)容。這一節(jié)的的主要內(nèi)容是“曲線的方程”與“方程的曲線”的概念及其關(guān)系,以及求解曲線方程的一般方法和步驟。(二)教材的地位和作用“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“依形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何的基本思想,對(duì)解析幾何教學(xué)有著深遠(yuǎn)的影響。求曲線方程是解析幾何所要解決的重要問題,體現(xiàn)了坐標(biāo)法的本質(zhì)代數(shù)化處理幾何問題。(三)課時(shí)安排本節(jié)內(nèi)容分3個(gè)課時(shí)學(xué)習(xí)。第1課時(shí)主要講解“曲線的方程”與“方程的曲線”的概念及其關(guān)系。第2課時(shí)講解求曲線方程的一般方法和步驟。第3課時(shí)是例題講解。本節(jié)課講解第2課時(shí)。二、教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)的要求以及前面對(duì)教材的分析和高中學(xué)生的認(rèn)知規(guī)律,本課節(jié)的教學(xué)目標(biāo)確定為:知識(shí)目標(biāo):理解坐標(biāo)法的作用及意義,掌握求曲線方程的一般方法和步驟,能根據(jù)所給條件建立適當(dāng)?shù)淖鴺?biāo)系求曲線的方程。能力目標(biāo):通過自主探索,讓學(xué)生滲透“特殊一般特殊”的認(rèn)知模式,完善認(rèn)知結(jié)構(gòu),體驗(yàn)坐標(biāo)法在處理幾何問題中的優(yōu)越性,并深化對(duì)曲線方程本質(zhì)的理解和滲透。培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合思想解決問題的能力。情感目標(biāo):讓學(xué)生感受對(duì)數(shù)學(xué)問題探索的樂趣和成功的喜悅,體會(huì)數(shù)學(xué)的理性,嚴(yán)謹(jǐn)和科學(xué)實(shí)用,展現(xiàn)人文精神,體現(xiàn)數(shù)學(xué)文化價(jià)值及其在社會(huì)進(jìn)步,人類文明發(fā)展中的重要作用。三、教學(xué)重難點(diǎn)分析重點(diǎn):本節(jié)課的重點(diǎn)是求曲線方程的方法和步驟。教學(xué)過程中通過總結(jié)歸納來突出重點(diǎn)。難點(diǎn):如何建立適當(dāng)?shù)淖鴺?biāo)系以及如何將集合條件代數(shù)化,是課堂上必須突破的難點(diǎn)。建立適當(dāng)?shù)淖鴺?biāo)系求解曲線的方程的過程類似于數(shù)學(xué)建模的過程,教學(xué)中注意引導(dǎo)學(xué)生體會(huì)數(shù)學(xué)建模的思想,這也是為了突破難點(diǎn)。四、教法與學(xué)法分析(一)教法分析本節(jié)課采用探究式教學(xué)法,并利用多媒體輔助教學(xué)。遵循“以學(xué)生為主體,教師是數(shù)學(xué)課堂活動(dòng)的組織者和參與者”的現(xiàn)代教育原則,以問題的提出,問題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問題,提倡學(xué)生主動(dòng)參與學(xué)習(xí)過程。通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為心靈愉悅的主動(dòng)認(rèn)知過程。(二)學(xué)法指導(dǎo)基礎(chǔ)教育課程改革提倡學(xué)習(xí)方式的多樣化。因此教學(xué)過程中要通過引導(dǎo)學(xué)生主動(dòng)參與、獨(dú)立思考和合作探究來發(fā)展學(xué)生搜集處理信息的能力、獲取新知識(shí)的能力、分析和解決問題的能力,以及交流合作的能力。本節(jié)課主要注重調(diào)動(dòng)學(xué)生積極思考和主動(dòng)探索,使學(xué)生真正成為知識(shí)的發(fā)現(xiàn)者和知識(shí)的研究者。五、教學(xué)過程本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,并且遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則。通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。(一)創(chuàng)設(shè)情境首先,讓學(xué)生觀看“動(dòng)點(diǎn)運(yùn)動(dòng)的路線軌跡”的視頻(動(dòng)點(diǎn)的軌跡即是曲線),目的是讓學(xué)生形成軌跡感知,并能明白抓住動(dòng)點(diǎn)滿足的幾何條件,然后將其代數(shù)化處理就能求解出對(duì)應(yīng)點(diǎn)軌跡方程。接著,用問題引入新課:我國神舟飛船多次發(fā)射升空,舉世矚目,就連擁有最多、最先進(jìn)間諜衛(wèi)星的美國也曾跟蹤丟了飛船的位置。這都是突然改變飛船飛行軌跡的結(jié)果。假如飛船在某一時(shí)間內(nèi)飛行軌跡上任意一點(diǎn)到地球球心和地球表面上一點(diǎn)的距離之和近似等于2a,視地球?yàn)榍蝮w,半徑為R,你能寫出一個(gè)飛船運(yùn)行的軌跡方程嗎?要解決這個(gè)問題,就需要用到今天學(xué)習(xí)的方法坐標(biāo)法求曲線方程(點(diǎn)的軌跡)。【設(shè)計(jì)意圖:通過情景的設(shè)置,讓學(xué)生形成認(rèn)知沖突,“引而不發(fā)”,引發(fā)學(xué)生主動(dòng)探索,積極思考,從而引入新課,同時(shí)讓學(xué)生感受到數(shù)學(xué)的實(shí)用價(jià)值。】(二)師生互動(dòng),探索新知前一節(jié)課已經(jīng)講解了曲線的方程和方程的曲線的概念和關(guān)系,在此基礎(chǔ)上,可以直接進(jìn)行對(duì)曲線方程的求解。1、例題講解例1 設(shè)A、B兩點(diǎn)的坐標(biāo)是(-1,-1)、(3,7)。求線段AB的垂直平分線的方程。例2 點(diǎn)M與兩條互相垂直的直線的距離的積是常數(shù),求點(diǎn)M的軌跡方程。說明:考慮到學(xué)生的認(rèn)知水平和接受能力,以上兩個(gè)例題由老師引導(dǎo)學(xué)生完成,讓學(xué)生理解利用坐標(biāo)法求曲線方程的一般方法。2、提煉新知根據(jù)前面兩個(gè)例題的解答過程,請(qǐng)學(xué)生討論歸納出坐標(biāo)法求曲線方程(軌跡)的一般步驟,讓學(xué)生經(jīng)歷從“特殊例題”到“一般方法”的認(rèn)知過程。然后老師再引導(dǎo)對(duì)學(xué)生總結(jié)的求曲線方程的步驟進(jìn)行優(yōu)化如下:建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如(x,y)表示曲線上任一點(diǎn)M的坐標(biāo);寫出適合條件P的點(diǎn)M的集合P=M|p(M);用坐標(biāo)表示條件P(M),列出方程f(x,y)=0;化方程f(x,y)=0為最簡形式;證明以化簡后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。說明:歸納求解步驟為:建系設(shè)點(diǎn)找條件列方程化簡方程檢驗(yàn)。其中步驟一般情況下可省略,如有特殊情況,必須予以說明。(三)即時(shí)訓(xùn)練,鞏固新知1.求到坐標(biāo)原點(diǎn)的距離等于2的點(diǎn)的軌跡方程。2.已知點(diǎn)M與x軸的距離和點(diǎn)M與點(diǎn)F(0,4)的距離相等,求點(diǎn)M的軌跡方程。分別讓學(xué)生上來板演其求解過程,然后分析指正。【設(shè)計(jì)意圖:通過即時(shí)的練習(xí),強(qiáng)化學(xué)生對(duì)求解曲線方程的記憶和應(yīng)用。】(四) 總結(jié)反思,提高認(rèn)識(shí)讓學(xué)生回憶“利用坐標(biāo)法求解曲線方程(點(diǎn)的軌跡)的步驟”,并體會(huì)在求解過程中運(yùn)用到的坐標(biāo)法和數(shù)學(xué)建模的思想。必要時(shí)教師加以補(bǔ)充說明。【設(shè)計(jì)意圖:知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。】(五)作業(yè)布置教材P72習(xí)題4、5、6。(六)板書設(shè)計(jì)課題:曲線和方程1.例1的解題步驟 3.坐標(biāo)法求曲線方程的步驟2.例2的解題步驟4.學(xué)生解答以上就是我說課的內(nèi)容,如有不足之處,懇請(qǐng)?jiān)u委老師批評(píng)指正。謝謝!平移說課稿(第一冊(cè)下)一、教材分析(一)教學(xué)內(nèi)容平移是人教版高中數(shù)學(xué)(必修)第一冊(cè)下第五章平面向量第八節(jié)的內(nèi)容。本節(jié)課的主要內(nèi)容是運(yùn)用向量知識(shí)推導(dǎo)出點(diǎn)的平移公式,并運(yùn)用點(diǎn)的平移公式來解決在同一坐標(biāo)系中函數(shù)圖象的平移問題。(二)教材的地位和作用本節(jié)課是學(xué)生在學(xué)習(xí)了向量的基礎(chǔ)上,理解在同一坐標(biāo)系中圖象平移后的點(diǎn)坐標(biāo)和平移前的點(diǎn)坐標(biāo)之間的關(guān)系,充分體現(xiàn)了向量知識(shí)在圖形平移中的應(yīng)用。它不僅為下一節(jié)正弦定理和余弦定理的推導(dǎo)與證明打下了基礎(chǔ),也為今后研究圓和圓錐曲線的平移提供了有力依據(jù)。同時(shí),平移還蘊(yùn)含著重要的數(shù)學(xué)思想方法,如轉(zhuǎn)化思想、對(duì)應(yīng)思想和換元法等。學(xué)習(xí)本節(jié)課的內(nèi)容能夠較好地培養(yǎng)學(xué)生的觀察分析能力、邏輯推理能力、探究能力和創(chuàng)新意識(shí)。(三)課時(shí)安排本節(jié)內(nèi)容安排1課時(shí)完成教學(xué)。二、教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)的理念以及對(duì)教材的分析和高中學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:知識(shí)目標(biāo):理解點(diǎn)的平移公式中三組坐標(biāo)的各自意義,要求學(xué)生能熟練運(yùn)用平移公式來解決點(diǎn)的平移、圖形的平移的有關(guān)問題。能力目標(biāo):通過學(xué)習(xí)平移公式的推導(dǎo),培養(yǎng)學(xué)生的轉(zhuǎn)化思想。通過體會(huì)平移中三組坐標(biāo)的對(duì)應(yīng)關(guān)系,讓學(xué)生加深對(duì)換元思想的理解。通過舉例練習(xí)培養(yǎng)學(xué)生的觀察分析、自主探索能力。情感目標(biāo):培養(yǎng)學(xué)生認(rèn)真參與、積極交流的主體意識(shí),體會(huì)數(shù)學(xué)思想方法的滲透性,培養(yǎng)學(xué)生善于發(fā)現(xiàn)問題的規(guī)律和及時(shí)解決問題的態(tài)度。三、重難點(diǎn)分析根據(jù)新課標(biāo)的要求和對(duì)教材的分析,本節(jié)課教學(xué)的重難點(diǎn)分別設(shè)定為:重點(diǎn):點(diǎn)的平移公式的應(yīng)用。要求學(xué)生能熟練運(yùn)用公式來解決點(diǎn)的平移和圖象的平移問題,同時(shí)注意向量和圖形的相互滲透性,從而進(jìn)一步加深學(xué)生對(duì)向量知識(shí)的理解。難點(diǎn):點(diǎn)的平移公式中的三組坐標(biāo)各自表示的意義,在解決平移問題時(shí),學(xué)生易對(duì)三者產(chǎn)生混淆。教學(xué)中應(yīng)注意引導(dǎo)學(xué)生在解題時(shí)要一步一步按照公式進(jìn)行,不可急于求成,也不可死記公式,而要活學(xué)活用,從而加強(qiáng)對(duì)公式的記憶并達(dá)到靈活準(zhǔn)確運(yùn)用知識(shí)的目的。四、教法與學(xué)法分析(一)教法分析教學(xué)過程是教師和學(xué)生共同參與的過程。引導(dǎo)發(fā)現(xiàn)法能夠充分調(diào)動(dòng)學(xué)生的積極性,將數(shù)學(xué)思想有效地滲透到教學(xué)活動(dòng)中去,通過引導(dǎo)學(xué)生觀察坐標(biāo)系中兩個(gè)點(diǎn)的坐標(biāo)和向量之間的關(guān)系,來思考點(diǎn)的平移公式;而講練結(jié)合法能夠讓學(xué)生及時(shí)地鞏固知識(shí),加深對(duì)知識(shí)的理解,并能培養(yǎng)理性思維。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),確定教學(xué)方法為引導(dǎo)發(fā)現(xiàn)法和講練結(jié)合法。另外,利用多媒體輔助教學(xué),直觀地反映教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開,從而優(yōu)化教學(xué)過程,提高課堂教學(xué)效率。(二)學(xué)法指導(dǎo)教給學(xué)生方法比教給學(xué)生知識(shí)更重要,教學(xué)過程中,學(xué)生的學(xué)是中心,會(huì)學(xué)是目的。因此本節(jié)課主要注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間。在學(xué)生學(xué)習(xí)平移公式時(shí),可以通過聯(lián)想學(xué)過的向量知識(shí),加深數(shù)學(xué)知識(shí)之間的相互滲透,并通過練習(xí)鞏固來熟悉對(duì)平移公式的運(yùn)用,檢驗(yàn)學(xué)習(xí)成果。因此本節(jié)課的學(xué)法應(yīng)為聯(lián)想法和練習(xí)法。五、教學(xué)過程本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在解決問題的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。(一)創(chuàng)設(shè)情境通過多媒體向?qū)W生動(dòng)態(tài)演示函數(shù)的圖象向右平移個(gè)單位,向下平移3個(gè)單位得到新函數(shù)圖象的變化過程。通過觀察,讓學(xué)生從向量的角度思考這樣的變化有什么特點(diǎn)?說明:在函數(shù)圖象平移過程中,每一點(diǎn)都是按照同一方向移動(dòng)同樣的長度,所以我們有兩點(diǎn)思考:其一,平移所遵循的“長度”和“方向”正是向量的兩個(gè)本質(zhì)特征,因此,從向量的角度看,一個(gè)平移就是一個(gè)向量。其二,由于圖形可以看成點(diǎn)的集合,故認(rèn)識(shí)圖形的平移,就其本質(zhì)來講,就是要分析圖形上點(diǎn)的平移。【設(shè)計(jì)意圖:通過對(duì)函數(shù)圖象的復(fù)習(xí),來引入新的知識(shí),符合學(xué)生的認(rèn)知規(guī)律,并且能激發(fā)學(xué)生學(xué)習(xí)興趣。】(二)提煉新知1、平移設(shè)F為平面內(nèi)一個(gè)圖形,將F上所有的點(diǎn)按照同一方向,移動(dòng)同樣的長度,得到,這個(gè)過程叫做圖形的平移。2、平移公式的推導(dǎo)設(shè)點(diǎn)P(x,y)是圖形F上的任意一點(diǎn),它在平移后圖形上的對(duì)應(yīng)點(diǎn)為,且設(shè)的坐標(biāo)為(h,k)。如何將三個(gè)坐標(biāo)聯(lián)系起來?利用坐標(biāo)原點(diǎn)(0,0)。則由 ,得到公式 這個(gè)公式叫作點(diǎn)的平移公式,它反映了圖形中每一點(diǎn)在平移后的新坐標(biāo)與原坐標(biāo)間的關(guān)系。 上面的平移公式也可變形為【設(shè)計(jì)意圖:老師引導(dǎo)學(xué)生推導(dǎo)出平移公式,加深學(xué)生對(duì)平移公式的理解和記憶】3、圖形的平移公式給定向量a(h,k),由原解析式求新解析式時(shí),把公式代入原解析式中整理就可得出新解析式。 應(yīng)當(dāng)注意,上述點(diǎn)或圖形平移,坐標(biāo)軸并沒有移動(dòng),平移前后均在同一坐標(biāo)系上。(三)即時(shí)訓(xùn)練,鞏固新知1.例題講解點(diǎn)和圖像的平移是本節(jié)課的重點(diǎn),為了強(qiáng)化學(xué)生對(duì)公式的記憶和運(yùn)用,在這一環(huán)節(jié)中給出下面三個(gè)例題:例1 (1)把點(diǎn)A(-2,1)按a=(3,2)平移,求對(duì)應(yīng)點(diǎn)A,的坐標(biāo)(x,y,)。 (2)點(diǎn)M(8,-10)按a平移后的對(duì)應(yīng)點(diǎn)M,的坐標(biāo)為(-7,4),求a。說明:(1)、(2)兩題都是已知點(diǎn)的平移公式中三組坐標(biāo)中的兩組,求另一組坐標(biāo)。可以通過直接帶入公式求得,所以例1由學(xué)生自主完成。例2 將函數(shù)y = 2x的圖象按a = (0,3)平移到,求的函數(shù)解析式。說明:例2是關(guān)于圖像的平移問題,可以根據(jù)圖像上點(diǎn)的平移來求得新解析式。這道題由老師引導(dǎo)學(xué)生一起完成。在講解的過程中一定要提醒學(xué)生注意原坐標(biāo)、新坐標(biāo)、平移坐標(biāo)三者之間的對(duì)應(yīng)和聯(lián)系,不要將其混淆,這也是為了攻克難點(diǎn)。例3 已知拋物線y = x2 + 4x + 7.(1)求拋物線頂點(diǎn)的坐標(biāo)。(2)求將這條拋物線平移到頂點(diǎn)與坐標(biāo)原點(diǎn)重合時(shí)的函數(shù)解析式。 說明:第一個(gè)小問讓學(xué)生自主完成,第二個(gè)由于較之前面兩個(gè)例題更具難度,因此,由老師引導(dǎo)學(xué)生分析解題思路并完成。【設(shè)計(jì)意圖:在講解例題時(shí),不僅在于怎樣解,更在于為什么這樣解。并及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于發(fā)展學(xué)生的思維能力。】2.課堂練習(xí)(1)點(diǎn)A(3,5),B(7,0)按向量a=(4,5)平移,求平移后各對(duì)應(yīng)點(diǎn)的坐標(biāo)。(2)函數(shù)y=x的圖像按a=(0,4)平移到,求的函數(shù)解析式。(3)函數(shù)y=2x2圖像F按a=(2,-2)平移到,求的函數(shù)解析式。分別讓三位學(xué)生上來板演三道題的求解過程,然后分析指正。【設(shè)計(jì)意圖:在對(duì)知識(shí)點(diǎn)有一定的了解之后,及時(shí)的安排課堂練習(xí)達(dá)到鞏固知識(shí)的目的。】(四)總結(jié)反思,提高認(rèn)識(shí)由學(xué)生自主歸納,總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容,教師加以補(bǔ)充說明。(1)點(diǎn)的平移公式以及平移公式中各個(gè)量的意義; (2)利用平移公式解決平移問題的方法;(3)體會(huì)運(yùn)用平移公式的過程中所用到的對(duì)應(yīng)法,換元法。【設(shè)計(jì)意圖:知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學(xué)生的良好的個(gè)性品質(zhì)目標(biāo)。】(五)作業(yè)布置教材P126習(xí)題1、3、4。(六)板書設(shè)計(jì)課題:平移1.平移概念2.推導(dǎo)平移公式的過程3.例題講解圖示區(qū) 學(xué)生板演以上就是我說課的內(nèi)容,如有不足之處,懇請(qǐng)?jiān)u委老師批評(píng)指正。謝謝!球的體積一、教材分析1、 教學(xué)內(nèi)容球的體積是人民教育出版社出版的高中數(shù)學(xué)第二冊(cè)下(B)第9章第10節(jié)球中的內(nèi)容。其主要內(nèi)容是運(yùn)用轉(zhuǎn)化思想、化歸思想和極限思想推導(dǎo)出球的體積公式,并對(duì)公式進(jìn)行練習(xí)和加深鞏固。2、 教學(xué)內(nèi)容的地位和作用球的體積是在學(xué)生已經(jīng)學(xué)過的柱體、椎體等基本幾何體的基礎(chǔ)上,通過空間度量形式來了解基本幾何體的結(jié)構(gòu)特征,它既是球和它的性質(zhì)在知識(shí)上的延伸和發(fā)展,又是本章直線、平面、簡單幾何體的運(yùn)用與鞏固。它所使用的“分割求近似和,再由近似和轉(zhuǎn)化為準(zhǔn)確和”的方法,也為之后學(xué)習(xí)球的表面積提供了方法基礎(chǔ)。同時(shí),這部分內(nèi)容反映了平面與空間的內(nèi)在聯(lián)系和相互轉(zhuǎn)化。能夠較好地培養(yǎng)學(xué)生的觀察能力、抽象概括能力空間想象能力、和探究能力。3、教學(xué)重點(diǎn)難點(diǎn)分析重點(diǎn)是熟練掌握和運(yùn)用球的體積公式。難點(diǎn)則是學(xué)習(xí)球的體積公式的推導(dǎo)過程,了解推導(dǎo)過程中運(yùn)用到的轉(zhuǎn)化思想和化歸思想和“化整為零、積零為整”的極限思想。要解決這一難點(diǎn),教師在引導(dǎo)學(xué)生推導(dǎo)公式的過程中要注意留給學(xué)生思考的時(shí)間,并通過地球儀等實(shí)體教具給予學(xué)生直觀感受。4、課時(shí)安排球的體積安排1個(gè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年危險(xiǎn)品運(yùn)輸行業(yè)市場深度調(diào)研及趨勢(shì)前景與投融資研究報(bào)告
- 2025-2030年人力資源產(chǎn)業(yè)市場深度分析及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國黃糊精行業(yè)市場現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030年中國高腳桌行業(yè)市場現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030年中國食品軟包裝行業(yè)市場現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030年中國野外工作帳篷行業(yè)市場發(fā)展分析與發(fā)展趨勢(shì)及投資風(fēng)險(xiǎn)研究報(bào)告
- 2025-2030年中國酒產(chǎn)品行業(yè)市場現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030年中國貨運(yùn)索道行業(yè)市場現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 數(shù)學(xué)建模小學(xué)題目及答案
- 高中生物學(xué)高質(zhì)量發(fā)展的現(xiàn)狀與挑戰(zhàn)分析
- SOHO-VD 收獲變頻器手冊(cè)
- 修理廠大修發(fā)動(dòng)機(jī)保修合同
- 富血小板血漿(PRP)簡介
- MOOC 網(wǎng)絡(luò)技術(shù)與應(yīng)用-南京郵電大學(xué) 中國大學(xué)慕課答案
- 電化學(xué)儲(chǔ)能電站安全規(guī)程
- 四年級(jí)下冊(cè)數(shù)學(xué)教案-8.1確定位置丨蘇教版
- 乳粉大數(shù)據(jù)與智能制造
- 《初三中考動(dòng)員會(huì)》課件
- 住培中醫(yī)病例討論-面癱
- 迪士尼品牌經(jīng)營策略研究方法
- 2023年廈門地理中考試卷及答案
評(píng)論
0/150
提交評(píng)論