福建去年高考數(shù)學(xué)試卷_第1頁
福建去年高考數(shù)學(xué)試卷_第2頁
福建去年高考數(shù)學(xué)試卷_第3頁
福建去年高考數(shù)學(xué)試卷_第4頁
福建去年高考數(shù)學(xué)試卷_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建去年高考數(shù)學(xué)試卷一、選擇題(每題1分,共10分)

1.下列哪個(gè)選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的選擇題?

A.\(1+1=2\)

B.\(\sin60^\circ=\frac{\sqrt{3}}{2}\)

C.\(a^2+b^2=c^2\)

D.\(\sqrt[3]{-27}=-3\)

2.在福建去年高考數(shù)學(xué)試卷中,下列哪個(gè)方程組的解為\((x,y)=(1,1)\)?

A.\(\begin{cases}x+y=2\\2x-y=1\end{cases}\)

B.\(\begin{cases}x+y=1\\2x-y=2\end{cases}\)

C.\(\begin{cases}x+y=2\\2x-y=3\end{cases}\)

D.\(\begin{cases}x+y=3\\2x-y=1\end{cases}\)

3.以下哪個(gè)選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的立體幾何題目?

A.解一元二次方程\(x^2-5x+6=0\)

B.求圓的面積\(S=\pir^2\)

C.已知正方體邊長(zhǎng)為2,求其表面積

D.解對(duì)數(shù)方程\(\log_2{x}=3\)

4.在福建去年高考數(shù)學(xué)試卷中,下列哪個(gè)選項(xiàng)表示平面直角坐標(biāo)系中的一個(gè)點(diǎn)?

A.\((x,y)=(0,0)\)

B.\((x,y)=(1,1)\)

C.\((x,y)=(-1,-1)\)

D.\((x,y)=(\frac{1}{2},\frac{1}{2})\)

5.以下哪個(gè)選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的數(shù)列題目?

A.已知數(shù)列\(zhòng)(\{a_n\}\)中\(zhòng)(a_1=1\),\(a_n=2a_{n-1}\),求\(a_2\)

B.已知數(shù)列\(zhòng)(\{b_n\}\)中\(zhòng)(b_1=2\),\(b_n=3b_{n-1}-2\),求\(b_2\)

C.已知數(shù)列\(zhòng)(\{c_n\}\)中\(zhòng)(c_1=3\),\(c_n=4c_{n-1}-1\),求\(c_2\)

D.已知數(shù)列\(zhòng)(\{d_n\}\)中\(zhòng)(d_1=4\),\(d_n=5d_{n-1}+2\),求\(d_2\)

6.在福建去年高考數(shù)學(xué)試卷中,下列哪個(gè)選項(xiàng)表示函數(shù)\(y=\frac{1}{x}\)的圖象?

A.雙曲線

B.拋物線

C.直線

D.橢圓

7.以下哪個(gè)選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的統(tǒng)計(jì)題目?

A.已知某班有40名學(xué)生,其中男生20名,女生20名,求班級(jí)性別比例

B.已知某市去年高考平均分為500分,今年平均分為550分,求去年與今年的平均分之差

C.已知某學(xué)校去年有10名學(xué)生參加高考,今年有12名學(xué)生參加高考,求去年與今年的考生人數(shù)之比

D.已知某地區(qū)去年出生人口為5萬,今年出生人口為6萬,求去年與今年的出生人口之比

8.以下哪個(gè)選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的解析幾何題目?

A.求圓\(x^2+y^2=1\)與直線\(y=2x-1\)的交點(diǎn)坐標(biāo)

B.求拋物線\(y=x^2\)的焦點(diǎn)坐標(biāo)

C.求橢圓\(x^2+4y^2=1\)的頂點(diǎn)坐標(biāo)

D.求雙曲線\(x^2-4y^2=1\)的漸近線方程

9.在福建去年高考數(shù)學(xué)試卷中,下列哪個(gè)選項(xiàng)表示向量的坐標(biāo)表示法?

A.\(\vec{a}=(x_1,y_1)\)

B.\(\vec{a}=(x_1,x_2,x_3)\)

C.\(\vec{a}=(y_1,y_2,y_3)\)

D.\(\vec{a}=(x_1,y_1,z_1)\)

10.以下哪個(gè)選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的極限題目?

A.求極限\(\lim_{x\to0}\frac{\sinx}{x}\)

B.求極限\(\lim_{x\to0}(3x^2-2x+1)\)

C.求極限\(\lim_{x\to\infty}\frac{x}{x+1}\)

D.求極限\(\lim_{x\to0}(x^2-1)^{\frac{1}{2}}\)

二、多項(xiàng)選擇題(每題4分,共20分)

1.下列哪些選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的函數(shù)題目?

A.求函數(shù)\(f(x)=x^2-4x+3\)的零點(diǎn)

B.已知函數(shù)\(f(x)=\frac{1}{x}\),求\(f(x)\)的反函數(shù)

C.求函數(shù)\(f(x)=\sqrt{x^2-1}\)的定義域

D.求函數(shù)\(f(x)=\log_2{x}\)的值域

E.求函數(shù)\(f(x)=x^3-3x+2\)的單調(diào)區(qū)間

2.以下哪些選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的概率題目?

A.拋擲一枚公平的硬幣,求至少出現(xiàn)一次正面的概率

B.從一副52張的撲克牌中隨機(jī)抽取一張,求抽到紅桃的概率

C.某班級(jí)有30名學(xué)生,其中有18名男生和12名女生,隨機(jī)選擇3名學(xué)生參加比賽,求選出的3名學(xué)生都是女生的概率

D.從1到10這10個(gè)自然數(shù)中隨機(jī)選擇一個(gè)數(shù),求選擇的數(shù)是偶數(shù)的概率

E.某城市有1000戶家庭,其中有500戶家庭有電腦,隨機(jī)調(diào)查10戶家庭,求調(diào)查的家庭中至少有1戶有電腦的概率

3.下列哪些選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的立體幾何題目?

A.求長(zhǎng)方體的對(duì)角線長(zhǎng)度

B.求球的體積

C.求圓錐的表面積

D.求正四面體的體積

E.求圓柱的側(cè)面積

4.以下哪些選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的數(shù)列題目?

A.已知數(shù)列\(zhòng)(\{a_n\}\)中\(zhòng)(a_1=2\),\(a_n=3a_{n-1}-2\),求\(a_2\)

B.已知數(shù)列\(zhòng)(\{b_n\}\)中\(zhòng)(b_1=1\),\(b_n=2b_{n-1}+1\),求\(b_2\)

C.已知數(shù)列\(zhòng)(\{c_n\}\)中\(zhòng)(c_1=3\),\(c_n=4c_{n-1}-3\),求\(c_2\)

D.已知數(shù)列\(zhòng)(\{d_n\}\)中\(zhòng)(d_1=4\),\(d_n=5d_{n-1}+3\),求\(d_2\)

E.已知數(shù)列\(zhòng)(\{e_n\}\)中\(zhòng)(e_1=2\),\(e_n=e_{n-1}+3\),求\(e_2\)

5.以下哪些選項(xiàng)是福建去年高考數(shù)學(xué)試卷中的三角函數(shù)題目?

A.求角\(\theta\)的正弦值,已知\(\cos\theta=\frac{1}{2}\)

B.求角\(\alpha\)的余弦值,已知\(\sin\alpha=\frac{\sqrt{3}}{2}\)

C.求角\(\beta\)的正切值,已知\(\tan\beta=-\sqrt{3}\)

D.求角\(\gamma\)的余切值,已知\(\cot\gamma=\frac{1}{2}\)

E.求角\(\delta\)的正割值,已知\(\sec\delta=2\)

三、填空題(每題4分,共20分)

1.已知函數(shù)\(f(x)=2x^3-3x^2+4\),則\(f'(x)=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\

四、計(jì)算題(每題10分,共50分)

1.計(jì)算下列極限:

\[\lim_{x\to\infty}\frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{x}\]

2.解下列一元二次方程:

\[2x^2-5x+3=0\]

3.求函數(shù)\(f(x)=x^3-6x^2+11x-6\)的導(dǎo)數(shù),并求其極值。

4.已知三角形的三邊長(zhǎng)分別為\(a=3\),\(b=4\),\(c=5\),求該三角形的面積。

5.在平面直角坐標(biāo)系中,點(diǎn)\(A(2,3)\)關(guān)于直線\(y=x\)對(duì)稱的點(diǎn)\(B\)的坐標(biāo)是多少?請(qǐng)給出計(jì)算過程。

本專業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下:

一、選擇題答案及知識(shí)點(diǎn)詳解

1.D(基礎(chǔ)知識(shí),實(shí)數(shù)的性質(zhì))

2.A(方程組的解法,代入法)

3.C(立體幾何,正方體的性質(zhì))

4.B(平面直角坐標(biāo)系,點(diǎn)的坐標(biāo))

5.A(數(shù)列,等比數(shù)列的定義)

6.A(函數(shù),反函數(shù)的定義)

7.C(概率,組合概率的計(jì)算)

8.A(立體幾何,對(duì)角線的長(zhǎng)度)

9.A(向量,坐標(biāo)表示法)

10.A(極限,極限的定義)

二、多項(xiàng)選擇題答案及知識(shí)點(diǎn)詳解

1.A、B、C、E(函數(shù),函數(shù)的基本性質(zhì)和定義域、值域)

2.A、B、C、D(概率,概率的基本性質(zhì)和計(jì)算方法)

3.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論