




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西壯族梧州市2025年高考臨考沖刺數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設i是虛數單位,若復數()是純虛數,則m的值為()A. B. C.1 D.32.設a,b,c為正數,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件3.已知函數是奇函數,則的值為()A.-10 B.-9 C.-7 D.14.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°5.把滿足條件(1),,(2),,使得的函數稱為“D函數”,下列函數是“D函數”的個數為()①②③④⑤A.1個 B.2個 C.3個 D.4個6.命題“”的否定是()A. B.C. D.7.已知函數,集合,,則()A. B.C. D.8.已知,則的大小關系為A. B. C. D.9.定義在上的函數滿足,則()A.-1 B.0 C.1 D.210.設等比數列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要11.設函數,若函數有三個零點,則()A.12 B.11 C.6 D.312.已知變量x,y間存在線性相關關系,其數據如下表,回歸直線方程為,則表中數據m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.5二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知曲線的方程為,其圖象經過點,則曲線在點處的切線方程是____________.14.已知函數在上單調遞增,則實數a值范圍為_________.15.若,則_________.16.展開式中的系數為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求不等式的解集;(2)設的最小值為,正數,滿足,證明:.18.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(m為參數),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.19.(12分)已知是各項都為正數的數列,其前項和為,且為與的等差中項.(1)求證:數列為等差數列;(2)設,求的前100項和.20.(12分)設函數.(1)若,時,在上單調遞減,求的取值范圍;(2)若,,,求證:當時,.21.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.22.(10分)如圖,在平面直角坐標系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點,且點的縱坐標是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點,且點的橫坐標為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據復數除法運算化簡,結合純虛數定義即可求得m的值.【詳解】由復數的除法運算化簡可得,因為是純虛數,所以,∴,故選:A.本題考查了復數的概念和除法運算,屬于基礎題.2.B【解析】
根據不等式的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】解:,,為正數,當,,時,滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.本題主要考查充分條件和必要條件的判斷,結合不等式的性質是解決本題的關鍵.3.B【解析】
根據分段函數表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數是奇函數,所以,.故選:B本題主要考查分段函數的解析式、分段函數求函數值,考查數形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.4.C【解析】
如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.5.B【解析】
滿足(1)(2)的函數是偶函數且值域關于原點對稱,分別對所給函數進行驗證.【詳解】滿足(1)(2)的函數是偶函數且值域關于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.本題考查新定義函數的問題,涉及到函數的性質,考查學生邏輯推理與分析能力,是一道容易題.6.D【解析】
根據全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.本題考查全稱命題的否定,難度容易.7.C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.本題主要考查了集合的基本運算,難度容易.8.D【解析】
分析:由題意結合對數的性質,對數函數的單調性和指數的性質整理計算即可確定a,b,c的大小關系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數冪的大小的比較,我們通常都是運用指數函數的單調性,但很多時候,因冪的底數或指數不相同,不能直接利用函數的單調性進行比較.這就必須掌握一些特殊方法.在進行指數冪的大小比較時,若底數不同,則首先考慮將其轉化成同底數,然后再根據指數函數的單調性進行判斷.對于不同底而同指數的指數冪的大小的比較,利用圖象法求解,既快捷,又準確.9.C【解析】
推導出,由此能求出的值.【詳解】∵定義在上的函數滿足,∴,故選C.本題主要考查函數值的求法,解題時要認真審題,注意函數性質的合理運用,屬于中檔題.10.A【解析】
首先根據等比數列分別求出滿足,的基本量,根據基本量的范圍即可確定答案.【詳解】為等比數列,若成立,有,因為恒成立,故可以推出且,若成立,當時,有,當時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.本題主要考查了等比數列基本量的求解,充分必要條件的集合關系,屬于基礎題.11.B【解析】
畫出函數的圖象,利用函數的圖象判斷函數的零點個數,然后轉化求解,即可得出結果.【詳解】作出函數的圖象如圖所示,令,由圖可得關于的方程的解有兩個或三個(時有三個,時有兩個),所以關于的方程只能有一個根(若有兩個根,則關于的方程有四個或五個根),由,可得的值分別為,則故選B.本題考查數形結合以及函數與方程的應用,考查轉化思想以及計算能力,屬于常考題型.12.A【解析】
計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.本題考查線性回歸直線方程,解題關鍵是掌握性質:線性回歸直線一定過中心點.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.14.【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.本題考查函數的單調性,解題關鍵是問題轉化為恒成立,利用換元法和二次函數的性質易求解.15.【解析】
因為,所以.因為,所以,又,所以,所以..16.【解析】
把按照二項式定理展開,可得的展開式中的系數.【詳解】解:,故它的展開式中的系數為,故答案為:.本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)將表示為分段函數的形式,由此求得不等式的解集.(2)利用絕對值三角不等式求得的最小值,利用分析法,結合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因為,,所以要證,只需證,即證,因為,所以只要證,即證,即證,因為,所以只需證,因為,所以成立,所以.本小題主要考查絕對值不等式的解法,考查分析法證明不等式,考查基本不等式的運用,屬于中檔題.18.(1)l:,C方程為;(2)=【解析】
(1)直接利用轉換關系,把參數方程極坐標方程和直角坐標方程之間進行轉換.
(2)利用一元二次方程根和系數關系式的應用求出結果.【詳解】(1)曲線C的參數方程為(m為參數),兩式相加得到,進一步轉換為.直線l的極坐標方程為ρcos(θ+)=1,則轉換為直角坐標方程為.(2)將直線的方程轉換為參數方程為(t為參數),代入得到(t1和t2為P、Q對應的參數),所以,,所以=.本題考查參數方程極坐標方程和直角坐標方程之間的轉換,一元二次方程根和系數關系式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.19.(1)證明見解析;(2).【解析】
(1)利用已知條件化簡出,當時,,當時,再利用進行化簡,得出,即可證明出為等差數列;(2)根據(1)中,求出數列的通項公式,再化簡出,可直接求出的前100項和.【詳解】解:(1)由題意知,即,①當時,由①式可得;又時,有,代入①式得,整理得,∴是首項為1,公差為1的等差數列.(2)由(1)可得,∵是各項都為正數,∴,∴,又,∴,則,,即:.∴的前100項和.本題考查數列遞推關系的應用,通項公式的求法以及裂項相消法求和,考查分析解題能力和計算能力.20.(1)(2)見解析【解析】
(1)在上單調遞減等價于在恒成立,分離參數即可解決.(2)先對求導,化簡后根據零點存在性定理判斷唯一零點所在區間,構造函數利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調遞減.∴,.令,,時,;時,,∴在上為減函數,在上為增函數.∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數.又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數,在上為減函數.∴.又,∴,,.∴.,.∴當時,.此題考查函數定區間上單調,和零點存在性定理等知識點,難點為找到最值后的構造函數求值域,屬于較難題目.21.(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點:用空間向量法證垂直、求二面角.22.(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 宗教用品經銷管理辦法
- 新課標培訓分享課件內容
- 肩關節護理課件
- 肥胖兒童管理課件
- 腸胃炎護理課件
- 生鮮日配培訓課件
- 產科異位妊娠課件培訓
- 甘蔗種植管理培訓課件
- 高中對口升學數學試卷
- 二下人教版期末數學試卷
- (高清版)DB11∕T2333-2024危險化學品生產裝置和儲存設施長期停用安全管理要求
- 安徽省2024年普通高校招生普通高職(專科)提前批院校投檔分數及名次
- 重慶市地圖矢量動態模板圖文
- LY/T 2005-2024國家級森林公園總體規劃規范
- 2025年四川大學自主招生個人陳述的自我定位
- 蘇州工業園區企業名錄
- 2025年福建省建工集團及下屬集團招聘235人高頻重點提升(共500題)附帶答案詳解
- 上海市混合廢塑料垃圾熱解處理項目可行性研究報告
- DB33T 1152-2018 建筑工程建筑面積計算和竣工綜合測量技術規程
- 部編版道德與法治五年級下冊全冊復習選擇題100道匯編附答案
- DB45T 2364-2021 公路路基監測技術規范
評論
0/150
提交評論