




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
AIfor
infrastructureresilience
June2025
Tableofcontents
Executivesummary04
Foreword03
1.Introduction06
2.Investinginstability:Whyinfrastructureresiliencematters08
2.1.Growinginfrastructureexposure10
2.2.Risksimpactinginfrastructuresystems10
2.3.Incorporatingresilienceintoinfrastructure14
2.3.1.Plan:thepreventionphase14
2.3.2.Respond:detectionandreactionduringthehazardousevent15
2.3.3.Recover:aftertheincident15
3.LeveragingAIforinfrastructureresilience16
3.1.MeasuringtheeffectivenessofAIforinfrastructureresilience18
3.2.PotentialeconomicbenefitsofAI-poweredresilientinfrastructure19
3.3.AI-enabledinfrastructureresilienceinaction21
3.3.1.Reducingvulnerability:robustplanningandpreventivemeasures21
3.3.2.Mitigatinghazard:real-timedetectionandreactivemeasures24
3.3.3.Timelyoptimalrecovery25
4.UnlockingtheresiliencepotentialofAIforinfrastructure26
4.1.BarrierstotheimplementationofAI27
4.2.Awayforward29
Appendices32
Appendix1.Estimationoftheeconomicvalueofinfrastructure32
Appendix2.Assessmentoftheaveragedirectcostsofdifferenthazards32
Appendix3.CalculationoftheresilienceenabledbyimplementationofAI33
Authors35
Contacts36
DeloitteCenterforSustainableProgress37
Endnotes38
AIforinfrastructureresilience|Foreword
03
Foreword
Aroundtheglobe,infrastructuresystems
areundergrowingpressure—fromextreme
weathereventsandagingassetstothe
demandsoftheenergytransition,urbanization,andacceleratingtechnologicalchange.
Yetamidstthesechallengesliesasignificantopportunity:toenvisionandcreate
infrastructurethatismoreresilient,intelligent,andadaptable.
Artificialintelligence(AI)israpidlytransitioning
frombeingexperimentaltobeinganimportantpartofthesolution.Leadersarerecognizing
AInotjustasatechnicalinnovation,butone
ofthestrategictoolsthatcanbeusedtomake
infrastructuresystemsmoreresilient.Whetherthroughpredictivemaintenance,digitaltwins,orAI-enabledearlywarningsystems,AIishelpingpublicandprivatesectorleadersmakefaster,
smarterandmoreaccuratedecisions—andin
doingsoishelpingtomitigaterisks,reducecosts,lowerrecoverytimes,andmaintainvitalservicestosupportthrivingsocietiesandeconomies.
Examplesarealreadyemerging,liketheuseofdigitaltwinsincityplanningtosimulatefloodoccurrencesindifferentextremeweather
scenarios,demonstratingwhat’spossible
whenadvancedtechnologyisembeddedintoinfrastructurestrategy.
ThepotentialofAIisvast.Withtherightvisionandecosystemcollaboration,itcanhelp
leadersbuildinfrastructurethat’sstronger,
moreefficient,moresustainableandfuture-
ready.Progresscomeswheninfrastructure
stakeholders—includingpolicymakers,planners,operators,investors,technologyproviders,andinsurers—movebeyondexperimentationandpilotstohelpscaleAIadoptionwithconfidence.
Thetimingisright.Ecosystemsareevolving.
Solutionsarematuring.Thevaluepropositionisclear.AIcanbebothatoolforinnovationandastrategicenablerofresilience.
Exploretheinsights,drawinspirationfromtheexamples,andconsiderhowyourorganizationcantakethenextstepforward.
JenniferSteinmann
DeloitteGlobalSustainabilityBusinessleader
CostiPerricos
DeloitteGlobalGenAIBusinessleader
AIforinfrastructureresilience|Executivesummary
04
Executivesummary
Infrastructureisfundamentaltomodernsociety.Itcanshapehowwelive,workandmove,enablingtheflowofpeople,goods,andinformation.Fromenergyandwater,
tohealthcare,sanitation,andtransportation,infrastructurehelpsdeliveressential
servicesthatsupporthumanwell-beingandeconomicresilience.Wheninfrastructurethrives,societiescanflourish.
Toremaineffective,infrastructureshouldcontinually
evolve.Withacceleratingpopulationgrowthandeconomic
development,thecomingdecadeswilllikelydemandawaveofnewinfrastructure—systemsthataremoreexpansive,
intelligent,adaptive,andsustainable.Butasinfrastructure
systemsgrowinsizeandvalue,theyalsobecomeincreasinglyvulnerabletothechangingenvironmentsaroundthem.
Naturaldisastersaloneareprojectedtocauseapproximately
US$460billioninaverageannuallossestoinfrastructureglobally
by2050.1
Forcomparison,naturaldisastershaveresultedin
morethanUS$200billionofaverageannualdamagesgloballyoverthelast15years.
2
Naturalhazardsareexpectedtobecomemorefrequentandintenseinthefutureduetothechanging
climate,significantlyincreasingassociatedlosses.
3
Resilientinfrastructure—soitcanabsorbtheseshocks,bouncebackquickly,andadapt
4
—isimportantascontinuedeconomicandcivildemandsputhighways,powergrids,andwater
systemsundergreaterstress.
5
Makinginfrastructureresilientcanhelpprotectlivesandlivelihoods,keepcitiesrunning,andenableeconomicgrowthdespitepotential
risks.6
Thetransformativepowerofartificialintelligence(AI)hasthepotentialtosignificantlyenhanceinfrastructureresilience.
Infrastructureresilienceunfoldsacrossthreestages—planning(prevent),response(detectandreact),andrecovery—andAI
canofferpowerfultoolsateachstep.Intheplanningphase,
machinelearningcanhelpanalyzeriskdataandsimulate
scenariostoidentifymeasuresthatcanbetakenforpreventionandpreparednesstoimprovefloodresilien
ce7
orusingfire-
resistantmaterials.
8
Duringanevent,AI-drivenearly-warning
systemsandreal-timemonitoringhelpacceleratedetection,
9
andhelpguideemergency
responses.10
Intherecoveryphase,AIcanhelpacceleraterecoverybyprioritizingrepairsthroughpredictivedamageassessmentsandoptimizedresource
allocation.11
Byweavingdata-driveninsightsintoplanning,
response,andrecovery,AIcanstrengthentraditionalresiliencemeasures,reducevulnerabilities,andhelpinfrastructureadaptmoreeffectivelytoevolvingrisks.
Numerousreal-worldapplicationshelpdemonstratethe
effectivenessofAI-enhancedresiliencesolutions.Digitaltwins,forexample,cansimulateandstress-testinfrastructuredesigns,whichcanleadtomoredisaster-resilientassets.AI-powered
predictivemaintenancecanhelppreventtechnicalfailures
andensureoperationalcontinuity—forinstance,appliedtoanoffshorewindturbine,ithasthepotentialtoreducedowntimeby15%,andincreaseannualrevenuesbyupto6%,asoutlinedinthis
report.12
AIcanalsoplayanimportantroleinhazard
mitigation:systemsthatmonitorforestareasforearlysignsofsmokecandetectwildfiresintheirinfancy,enablingsuppressionbeforetheserisksescalate.
,
1314Forexample,adaptingCalifornia’searlywildfiredetectionsystemtoAustralia’sforestscould
mitigateanestimatedUS$100milliontoUS$300millionin
annualdamageswhilerequiringaone-timeinvestmentof
approximatelyUS$300million.
14
,15
Tosupportrecovery,AI
canacceleratepost-disasterdamageassessments,helpingto
restoreservicesandreduceeconomicdisruption.Forinstance,DeloitteConsultingLLP’sOptoAItoolforpost-disaster
inspectionscanmorethandoubleroofreconstructionspeedsbyhelpingtoidentifyrepairneedsafterextremeweatherevents.
12
AIforinfrastructureresilience|Executivesummary
05
ThefindingsinthisreportshowthatintegratingAI-poweredsolutionsforhazardmitigationandvulnerabilityreductionalonecouldyieldapproximatelyUS$70billiongloballyin
annualsavingsindirectdisastercostsby2050—equivalentto15%ofprojectedaveragelosses,complementingother
resilienceoptions.16
WithimprovedAIcapabilities,these
savingscouldexceedUS$110billionannually.
16
Despitethisenormouspotential,thepathtowidespread
implementationofAI-enabledresilienceininfrastructure
systemsischallenging.Obstaclesincludetechnological
limitations,financialconstraints,regulatoryuncertainty,and
institutionalinertia.High-quality,diversedatasetscontribute
toeffectiveAIperformance,yetdataavailabilityandaccuracy
remainoneofthe
majorconcerns.17
Upfrontinvestment
costs—oftenpairedwithuncertainshort-termreturns—can
furtherdeteradoption.
18
Ontheregulatoryandsecurity
front,asAI-specificframeworkscontinuetoevolve,coupled
withcybersecurityandprivacyconcerns,progresscanbe
slow,particularlyinregionswithlimiteddigitalinfrastructure,notablylow-incomecountries.Additionally,ashortageofskilledprofessionalsandorganizationalresistancetonewtechnologiesandwaysofworkingcanhindermomentum.
19
RealizingthepotentialofAItoenhanceinfrastructureresiliencecanrequirecoordinatedactionacrosstheecosystem—from
policymakersandinfrastructureoperatorstotechnology
companiesandthefinancialservicesandinsuranceindustries:
?Policymakersplayafoundationalrolebyhelpingtoshapetheenablingenvironmentforthewidespreadadoption
ofAI.Thiscanincludeplayingaroleinstandardsetting,
offeringeconomicsupportschemes,andmodernizinglegacyinfrastructure.Beyondregulationandeconomicsupport,
governmentscanalsohelpdrivecoordinationacrosstheinfrastructurevaluechain—facilitatingcross-sectorcollaborationandlong-termplanning.
?Infrastructureownersandoperators,manyofwhomarepublicagencies,shouldlooktoembedAIacrosstheplanning,design,andoperationalphasestohelpunlockefficiencygainsandenhanceresilience.Earlyinvestmentsinhigh-impactpilotprojectscangenerateproofpoints,economiesofscale,andacycleofcontinuouslearning.Modernizingsystemstobe
AI-ready,particularlythroughadaptableandexpandableITframeworksandinteroperabilitystandards,isimportant.
?Financialinstitutionsarekeyinovercomingthefunding
gapthatAIsolutionsoftenface.Throughinnovativefinancingtools—suchasresiliencebondsortargetedcreditlinesthat
includeAI—theycanhelpsupportlong-termprojectswith
delayedreturns.TheseinstitutionscanalsoapplyAIinternallytohelpenhanceriskassessmentandinvestmentprocesses,
includingcreditunderwritingandassetevaluations.Asco-
investorsinpublic-privatepartnerships,theycanhelpamplifytheimpactofresiliencestrategiesalongsidegovernments.
?Insurershavetheopportunitytoevolvealongside
infrastructuresystemsbyembeddingAIintotheirservices.ThisincludesdevelopingnewproductstailoredtoAI-enabledassets,offeringpremiumreductionsforsystemsthathelp
integratetrustedAIsolutions,andimprovingriskmodelsthroughadvancedanalytics.Indoingso,insurerscanhelpincentivizetheadoptionofAIforresiliencewhilebetter
managingtheirownexposuretorisksassociatedwithnaturalhazards.
?TechnologycompaniesaretheinnovationenginehelpingtopowerAIdevelopment.Theirroleextendsbeyondsoftware
andalgorithmstoincludeintegratedsolutionsthathelp
combineAIwithcomplementarytechnologiessuchasthe
InternetofThings(IoT)anddigitaltwins.Demonstratingthe
measurableimpactofthesesolutionsonresilienceoutcomesisimportant.Equallyimportantishelpingtoensurethatdigitalinnovationalignswithoperationalgoals,includingmanagingenergyconsumptionthroughalternativeenergysources.
?Architectureandengineeringfirmsplayakeyrolein
embeddingAItoolsintotheplanninganddesignphases
ofinfrastructuresystemsearlytohelpenhancetheir
resilience.Byintegratingtoolssuchasdigitaltwinsduring
planningandhelpingtoensurecompatibilitywithreal-time
monitoringsystemsandpredictiveanalytics,theycanhelp
createsmarter,moreresilientinfrastructure.Theirclose
collaborationwithtechnologyandserviceproviderscanhelpensurethatemerginginnovationstranslateintoscalable,real-worldsolutions.
Coordinatedanddecisiveactionacrossstakeholdersisimportanttohelpbuildinfrastructuresystems,thatarepreparedforthechallengesofachangingworld.
ByforginganecosystemthatisresilienttodisruptionandreinforcedwithAI
acrossthephasesofresilience—planning(prevent),response(detectandreact),
andrecovery—asafer,smarterandmoreresilientfutureawaits.
AIforinfrastructureresilience|1.Introduction
06
1.Introduction
Infrastructurecomprisestheassetsandnetworksthathelpdelivertheessentialservicessupportingmodernlife—fromwater,food,andenergytohealthcare,education,and
communications.
20
Theseassetsincludephysicalsystemssuchasenergygenerationanddistribution,roads,railways,bridges,ports,airports,watertreatmentandsupply,
andwastemanagement,aswellasthedigitalplatforms
thatcontrol,monitor,andoptimizetheiroperation.
21,22
Inmanyeconomies,infrastructureinvestmentmakesupasubstantialshareofGDP—forexample,oversixpercentinChinain2020—anditsvaluecontinuestogrow.
23
Recognizingtheroleofinfrastructuresystemsin
underpinningeconomicgrowthisimportant,especially
whenconfrontedwithdisasters.Sucheventscan
profoundlydisruptsystems,whichcanresultineconomicconsequences.Thecomplexinterconnectionsbetween
infrastructureandthebroadereconomyrevealhow
indirecteffects—suchassupplychaininterruptions,
servicedisruptions,andcommunitydisplacements—candecelerateeconomicactivity.Furthermore,thelong-termimpactsonproductivity,accesstoeducation,andhealthemphasizethenecessityforresilientinfrastructuretohelpalleviatethesechallenges.
Infrastructuresystemsaresubjecttodisasterrisksthatcanentailbothphysicaldamagecostsandservicedisruptions.Risktoinfrastructureemergesfromtheinteractionof
threedimensions
22
—hazard,exposure,andvulnerability(
Figure1
)—whichtogetherhelpdeterminetheriskof
damagewhenadisruptiveeventoccurs.Hazardsarethepotentiallydamagingphysicaleventsthemselves—storms,floods,heatwaves,orearthquakes—whosefrequency
andintensityareincreasing.Exposurereferstothe
presenceandvalueofassetswithinahazardzone,from
powerstationsandpipelinestodigitalcontrolnetworks.Exposurecanincreaseassocietiesinvestmoreheavilyininfrastructure.Vulnerabilitydescribeshowsusceptible
thoseassetscanbetoharm—drivenbyfactorslike
designstandards,materialtypes,maintenanceregimes
andsysteminterdependencies.Byanalyzinghowagivenhazardinteractswithexposed,vulnerableinfrastructure,decision-makerscanhelpquantifyriskandprioritize
investmentsthatcanreduceexposure(forexample,by
relocatingassets),strengthendesignandmaintenancetolowervulnerability,andbuildadaptivecapacity—helpingtoensurethatnewandexistingsystemsremainresilientinthefaceofevolvingrisks.
Engineersandplannerscanembedresiliencein
infrastructurebydesigningandmanagingsystemsto
helpwithstandshocks—absorbingimpacts,responding
swiftlyduringanevent,andadaptingafterwardtohelp
restoreservicewithminimaldisruption.Thiscanbring
significanteconomicbenefits.Thebenefit-to-costratio
(BCR)estimatesforinvestmentsinresilienceexceedthree,andinsomecasescanevenreachashighas50.
24
This
meansforUS$1investedinaresiliencesolution,US$3
toUS$50worthofdamagesandlossescanbeavoided.
AccordingtotheNationalInstituteofBuildingSciences,
eachdollarinvestedinresiliencesavesbetweenUS$4andUS$11indisasterresponseandrecoverycosts.
25
Locatinginfrastructureinplaceslesslikelytoexperiencehazards,andreducingitsvulnerabilitytohazardsthroughbetterdesignorbuildingredundantsystems,canhelpdevelopinfrastructureresilience.
AIforinfrastructureresilience|1.Introduction
07
Figure1.Understandinginfrastructurerisksfordisastermanagement
Hazards
Thepotentialoccurrenceofaneventthatcancausedamage.Itischaracterizedbyitsprobability(howlikelyitistohappen)andintensity(howstrongorsevereitis),asinthecaseof
earthquakes,tropicalcyclones,etc.
Exposure
Referstothepresenceandvalueofpeople,infrastructureoreconomicactivitiesinareasthatcouldbea?ectedbya
Risk
components
hazard.Itquanti?eswhatisatriskwhenahazardoccurs,includingthephysicallocationandcharacteristics.
VuInerabiIity
Referstothetendencyofexposedpeople,assets,orsystemstosu?erharmorlosswhena?ectedbyahazard.
Source:DeloitteGlobalbasedontheassessmentscarriedbyCDRI,
22
UnitedNations,
26
andIPCC.
27
Initsbroaderdefinitionasabranchofcomputersciencethat
enablesmachinestoperformtasksrequiringhumanintelligence,
28
AIistransformingoursocieties.Itisalsorevolutionizingindustriessuchashealthcare,transportation,manufacturing,andretail,byoptimizingsupplychainsandprovidingpredictivediagnostics,
real-timedecision-making,personalizedrecommendations,anddifferenttypesofautomation.
29
Beyondthesetransformations,AIispositionedtohelpstrengtheninfrastructureresilience:itcanhelppredictequipmentdegradationandschedulemaintenancebeforefailuresoccur,
30
usehigh-resolutionweatherandsensordatatoforecastfloodsorheatwavesdaysinadvance,
31
and
deploycomputer-visiondronestoinspectbridgesandpipelinesafteranevent.
32
Bylayeringthesecapabilitiesatoptraditionalresiliencemeasures—suchashazard-basedland-useplanning,robustengineeringstandards,andemergencyresponse
drills
33
—organizationscangainearlierwarning,morepreciseriskassessments,andautomateddecisionsupportthattogetherhelpreducedowntime,limitdamage,andacceleraterecovery.
WhileAIhasdemonstrateditsvalueinoptimizingoperations,
34
andstrengtheningindustrialsystems,
29
thereisstillalackoffocused,
conciseassessmentofitsroleininfrastructureresilience—
especiallyasassetexposureandfrequencyandintensityof
extremeweathereventsgrow.Thisreportaimstohelpfillthisgapbyfirst,identifyingtherisksthreateningtheinfrastructureand
potentialdamages,andsecond,assessingthekeyapplicationsofAItohelpenhancetheresilienceofinfrastructureandtheresultanteconomicbenefits.
Usingadata-driven,model-basedapproach,thisanalysisestimatesboththecurrentandfuturevalueofinfrastructuresystems,as
wellastheaveragelossescausedbymajornaturaldisasters.
Usingexamplesandcasestudiesbasedonempiricalfindings
andmodeledapplications,AI’sresilienceimprovementpotentialisassessedandcalculated.Thefindingsarethencompiledandinterpretedfromadecision-makerlens,toidentifynotonlytheanswertothequestion“what”,butalsoto“how”toharnessAItoenhanceinfrastructureresilience.
AIforinfrastructureresilience|2.Investinginstability:Whyinfrastructureresiliencematters
08
2.Investinginstability:Whyinfrastructureresilience
matters
AIforinfrastructureresilience|2.Investinginstability:Whyinfrastructureresiliencematters
09
Infrastructureservesasabackboneofcommunitiesandsociety.DeloitteGlobal’sanalysisshowstheeconomicvalueofinfrastructurecouldreachUS$390trillionby2050,an85%increasecomparedto2022,whiletheannualaveragelossestoinfrastructurecausedbynaturalhazardscouldmorethandoubleby2050,reachingapproximatelyUS$460billion.Resiliencecancreateimpactineachofits
implementationphasesagainstahazard—planningandprevention,detectionandresponseasit
happens,andrecoveryafterwards—becomingincreasinglyimportanttohelpminimizethese
losses.35
Infrastructurereferstothefundamentalfacilitiesandsystems
servingacountry,city,orotherarea,includingtheservicesand
facilitiesnecessaryforitseconomytofunction.
36
Infrastructurecanbedividedintotwomaincategories:physicalinfrastructureand
digitalinfrastructure.
Physicalinfrastructureencompassesthebuiltenvironment,servingcommunities:transportationinfrastructure,utilities,telecommunications,andsocial(administrativeandpublic)
servicebuildings,includingschools,hospitals,socialhousing,andpublicsafetyinfrastructure.
37
Digitalinfrastructurereferstothedigitalsideofphysicalandsocialinfrastructure,supportingandenhancingitsfunctionality.Itincludesinformationtechnologies,cloudplatforms,software,etc.
38
(
Figure2
).
Physicalanddigitalinfrastructuresystemsareamongsomeofthekeyinvestmentsthathelpsupporteconomicgrowthandsocial
development.
6
Figure2.Physicalanddigitalinfrastructuresystems
Transportation:
roads,railways,portsandairports
Telecommunications
Socialandadministrative
PhysicaI
infrastructure
Energysystems:
power,oilandgas
services:hospitalsand
educativebuildings,publicsafetyandadministrativebuildings
Watersystems:
wastewaterandsewage
Natureandagriculture:
forests,agroforestrysystems,irrigationsystems
Informationtechnologies
Software
Cloudplatforms
DigitaIinfrastructure
Source:DeloitteGlobalanalysisbasedonTheWorldBank
37
,
38
,39
AIforinfrastructureresilience|2.Investinginstability:Whyinfrastructureresiliencematters
10
2.1.Growinginfrastructureexposure
Infrastructuredevelopmentisanimportantpillarfortheglobal
economy.Everyyearcountriesspendbetween0.2%and6%of
theirGDPintransportationinfrastructuredevelopmentalone,
representingmorethanUS$200billionofannualinvestments.
,
4041Infrastructureinvestmentsareexpectedtoreachtrillionsof
dollarsinthecomingdecadestohelpsupportfutureeconomic
developmentandpopulationgrowth.
42
Thetotalestimated
infrastructurevaluefor2050isexpectedtogrowbyapproximately85%,frommorethanUS$200trillionin2022toapproximately
US$390trillionin2050,drivenbytheseinvestments(
Figure3
).
2.2.Risksimpacting
infrastructuresystems
Infrastructuresystemscanbesubjecttoawiderangeofrisksthatcanbecausedbydifferenttypesofhazardsandincidents,includingnaturaldisasters,technicalfailures,cyberthreats,
andsocialinstability(
Figure4
).Acutenaturalshockssuchas
earthquakes,floods,andhurricanescancausesudden,severe,
andextensivedamagetoinfrastructure.
43
Chronicstresses
amplifythefrequencyandseverityofextremeevents,intensifyingnaturalhazards.
44
Concernsrelatedtothehealthandstateof
physicalassets,suchascorrosion,agingcomponents,ormaterialdegradation,cangraduallyundermineperformance,causing
technicalincidentsandfailures.Asinfrastructuresystemsbecomeincreasinglydigital,intelligent,anddata-heavy,cyberattacks
representagrowingrisk,withthepotentialtodisruptoperationsandcompromisesafety.
45
Finally,war/conflicts,geopolitical
tensions,andsocialmovementscanalsoimpactinfrastructure
systemsandcausedamages.Forinstance,thelatestreportoftheRapidDamageandNeedsAssessment(RDNA4)commissionedbytheUkrainianGovernment,theWorldBankGroup,theEuropeanCommission,andtheUNfoundthatthattheRussia-Ukraine
warcausedmorethanUS$520billionofdamagesbytheendofDecember2024,primarilyinhousing,transport,andenergyinfrastructure.
46
Asdifferenttypesofinfrastructureandeconomicsectorsbecomemoreinterconnected,thepotentialimpactofrisksacrossmultipledomainsbecomesmoresevere.
47
Adisruptioninonesectorcanquicklycascadeintoothers,suchaspoweroutagesaffecting
communications,orwatersupplyinterruptionshinderingenergyproduction.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 16809:2025 EN Non-destructive testing - Ultrasonic thickness determination
- 【正版授權(quán)】 ISO 7040:2025 EN Fasteners - Prevailing torque hexagon nuts - Regular nuts (with non-metallic insert)
- 2025年初級經(jīng)濟(jì)師之初級金融專業(yè)題庫綜合試卷A卷附答案
- 2025年資料員之資料員專業(yè)管理實(shí)務(wù)通關(guān)題庫(附帶答案)
- 【廣州】2025年廣東廣州市增城區(qū)康園工療站服務(wù)中心招聘工作人員3人筆試歷年典型考題及考點(diǎn)剖析附帶答案詳解
- Brand KPIs for milk:Visakha Dairy in India-英文培訓(xùn)課件2025
- Brand KPIs for milk:Dália in Brazil-英文培訓(xùn)課件2025
- 口腔科齲病宣傳講科課件
- 口腔健康課件
- 口腔健康創(chuàng)意美術(shù)課件
- 賣掛靠公司貨車的合同(2篇)
- TCHSLA 50014-2022《風(fēng)景園林師人才評價(jià)標(biāo)準(zhǔn)》
- 《材料成型裝備及自動(dòng)化》教學(xué)大綱
- 防止口腔治療中交叉感染
- DB52T+1844-2024+實(shí)驗(yàn)室化學(xué)廢液收集與處理規(guī)范
- 2024年人教版二年級語文上冊《第1單元1.小蝌蚪找媽媽》課文教學(xué)課件
- 土壤和地下水污染生態(tài)環(huán)境損害鑒定評估案例分析-筆記
- T-XJZJXH 0004-2024 牛奶中糠氨酸的快速測定方法拉曼光譜法
- 全國高中生物奧林匹克競賽考試大綱
- (新版)拖拉機(jī)駕駛證科目一知識考試題庫500題(含答案)
- 火鍋丸子供貨合同范本
評論
0/150
提交評論