2021-2025北京高考真題數(shù)學匯編:第一道解答題(第16題)_第1頁
2021-2025北京高考真題數(shù)學匯編:第一道解答題(第16題)_第2頁
2021-2025北京高考真題數(shù)學匯編:第一道解答題(第16題)_第3頁
2021-2025北京高考真題數(shù)學匯編:第一道解答題(第16題)_第4頁
2021-2025北京高考真題數(shù)學匯編:第一道解答題(第16題)_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第1頁/共1頁2021-2025北京高考真題數(shù)學匯編第一道解答題(第16題)一、解答題1.(2025北京高考真題)在△ABC中,.(1)求c的值;(2)再從條件①、條件②、條件③這三個條件中選擇一個作為已知,使得△ABC存在,求BC邊上的高.條件①:;條件②:;條件③:△ABC的面積為.2.(2024北京高考真題)在△ABC中,內角的對邊分別為,為鈍角,,.(1)求;(2)從條件①、條件②、條件③這三個條件中選擇一個作為已知,使得△ABC存在,求△ABC的面積.條件①:;條件②:;條件③:.注:如果選擇的條件不符合要求,第(2)問得0分;如果選擇多個符合要求的條件分別解答,按第一個解答計分.3.(2023北京高考真題)如圖,在三棱錐中,平面,.

(1)求證:平面PAB;(2)求二面角的大小.4.(2022北京高考真題)在△ABC中,.(1)求;(2)若,且△ABC的面積為,求△ABC的周長.5.(2021北京高考真題)在△ABC中,,.(1)求;(2)再從條件①、條件②、條件③這三個條件中選擇一個作為已知,使△ABC存在且唯一確定,求邊上中線的長.條件①:;條件②:△ABC的周長為;條件③:△ABC的面積為;

參考答案1.(1)6(2)答案見解析【分析】(1)由平方關系、正弦定理即可求解;(2)若選①,可得都是鈍角,矛盾;若選②,由正弦定理求得,由余弦定理求得,利用等面積法求得高;若選③,首先根據(jù)三角形面積公式求得,再根據(jù)余弦定理可求得,由此可說明三角形存在,且可由等面積法求解.【詳解】(1)因為,所以,由正弦定理有,解得;(2)如圖所示,若存在,則設其邊上的高為,若選①,,因為,所以,因為,這表明此時三角形有兩個鈍角,而這是不可能的,所以此時三角形不存在,故邊上的高也不存在;若選②,,由有,由正弦定理得,所以,所以由余弦定理得,此時三角形是存在的,且唯一確定,所以,即,所以邊上的高;若選③,△ABC的面積是,則,解得,由余弦定理可得可以唯一確定,進一步由余弦定理可得也可以唯一確定,即可以唯一確定,這表明此時三角形是存在的,且邊上的高滿足:,即.2.(1);(2)選擇①無解;選擇②和③△ABC面積均為.【分析】(1)利用正弦定理即可求出答案;(2)選擇①,利用正弦定理得,結合(1)問答案即可排除;選擇②,首先求出,再代入式子得,再利用兩角和的正弦公式即可求出,最后利用三角形面積公式即可;選擇③,首先得到,再利用正弦定理得到,再利用兩角和的正弦公式即可求出,最后利用三角形面積公式即可;【詳解】(1)由題意得,因為為鈍角,則,則,則,解得,因為為鈍角,則.(2)選擇①,則,因為,則為銳角,則,此時,不合題意,舍棄;選擇②,因為為三角形內角,則,則代入得,解得,,則.選擇③,則有,解得,則由正弦定理得,即,解得,因為為三角形內角,則,則,則3.(1)證明見解析(2)【分析】(1)先由線面垂直的性質證得,再利用勾股定理證得,從而利用線面垂直的判定定理即可得證;(2)結合(1)中結論,建立空間直角坐標系,分別求得平面與平面的法向量,再利用空間向量夾角余弦的坐標表示即可得解.【詳解】(1)因為平面平面,所以,同理,所以為直角三角形,又因為,,所以,則為直角三角形,故,又因為,,所以平面.(2)由(1)平面,又平面,則,以為原點,為軸,過且與平行的直線為軸,為軸,建立空間直角坐標系,如圖,

則,所以,設平面的法向量為,則,即令,則,所以,設平面的法向量為,則,即,令,則,所以,所以,又因為二面角為銳二面角,所以二面角的大小為.4.(1)(2)【分析】(1)利用二倍角的正弦公式化簡可得的值,結合角的取值范圍可求得角的值;(2)利用三角形的面積公式可求得的值,由余弦定理可求得的值,即可求得的周長.【詳解】(1)解:因為,則,由已知可得,可得,因此,.(2)解:由三角形的面積公式可得,解得.由余弦定理可得,,所以,△ABC的周長為.5.(1);(2)答案不唯一,具體見解析.【分析】(1)由正弦定理化邊為角即可求解;(2)若選擇①:由正弦定理求解可得不存在;若選擇②:由正弦定理結合周長可求得外接圓半徑,即可得出各邊,再由余弦定理可求;若選擇③:由面積公式可求各邊長,再由余弦定理可求.【詳解】(1),則由正弦定理可得,,,,,,解得;(2)若選擇①:由正弦定理結合(1)可得,與矛盾,故這樣的不存在;若選擇②

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論