配方法第1課時直接開平方法課件-人教版數學九年級上冊1_第1頁
配方法第1課時直接開平方法課件-人教版數學九年級上冊1_第2頁
配方法第1課時直接開平方法課件-人教版數學九年級上冊1_第3頁
配方法第1課時直接開平方法課件-人教版數學九年級上冊1_第4頁
配方法第1課時直接開平方法課件-人教版數學九年級上冊1_第5頁
已閱讀5頁,還剩22頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第二十一章一元二次方程第1課時

直接開平方法21.2.1配方法21.2解一元二次方程學習目標

新課導入1.如果

x2=a,則x叫做a的

.2.如果

x2=a(a≥0),則x=

.3.如果

x2=64,則x=

.4.任何數都可以作為被開方數嗎?負數不可以作為被開方數.平方根±8解下列方程,并說明你所用的方法,與同伴交流.(1)x2=4(2)x2=0(3)x2+1=0解:根據平方根的意義,得x1=2,x2=-2.解:根據平方根的意義,得x1=x2=0.解:根據平方根的意義,得

x2=-1,因為負數沒有平方根,所以原方程無解.講授新知知識點直接開平方法探究新知問題:一桶油漆可刷的面積為1500dm2,李林用這桶油漆恰好刷完10個同樣的正方體形狀的盒子的全部外表面,你能算出盒子的棱長嗎?解:設正方體的棱長為xdm,10×6x2=1500一元二次方程你會解這個方程嗎?整理,得x2=25根據平方根的意義,得x=±5,即x1=5,x2=﹣5可以驗證,x1=5和x2=﹣5是方程①的兩個根因為棱長不能是負值,所以盒子的棱長為5dm±5都符合實際意義嗎?在用方程求解實際問題時,要考慮所得結果是否符合實際意義。探究新知試著求解下列一元二次方程:1.x2=162.x2=03.x2=-25x1=4,x2=-4.x1=x2=0.無實數解對于方程x2=p求解一般步驟:(2)當p=0時,方程有兩個相等的實數根x1=x2=0;(3)當p<0時,因為任何實數x,都有x2≥0,所以方程該無實數根.(1)當p>0時,根據平方根的意義,方程有兩個不等的實數根

,

;例題解析例題:解下列方程:(1)?x2=4;

(2)4x2-9=0;

(3)x2+4=12.解:根據平方根的意義,

x=±2,

x1=2,x2=-2.

例題解析對照上面解方程的過程,該怎樣解方程(x+3)2=5?解方程:(x+3)2=5解:x+3=±

,即x+3=,或x+3=-.解得:x1=-3+,

或x2=-3-.

直接開平方

例題解析解方程(x+3)2=5數學轉化思想未知的、陌生的、復雜的問題已知的、熟悉的、簡單的問題通過演繹歸納解決轉化的目的是不斷發現問題,分析問題和最終解決問題。學會數學轉化,有利于實現學習遷移,從而可以較快地提高學習質量和提升學習數學能力。我們剛才嘗試求解形如x2=p(p≥0)的式子,針對形如(x+a)2=p(p≥0)的式子,我們可以嘗試用數學轉化的思想進行求解。例題解析例題2:(x+6)2-9=03(x-1)2-12=0解:(x+6)2=9

x+6=3或x+6=-3x1=-3,x2=-9解:3(x-1)2=12(x-1)2=4

x-1=2

或x-1=-2

x1=3,x2=-1新知探究怎樣解方程:x2+2x–1=0?把常數項移到等號右邊,得x2+2x=1.對等號左邊配方,得x2+2x+1=1+1.即

(x+1)2=2.直接開方,得x1

=–1,x2=––1.因為兩邊加1,式子左邊可以恰好湊成完全平方式.為什么在方程兩邊同時加上數“1”而不是其他數?降次新知探究通過”降次”,將一個一元二次方程轉化為兩個一元一次方程。左邊是含有未知數的完全平方式,右邊是非負常數的一元二次方程可化為(x+m)2=n(n≥0)。利用平方根的定義直接開平方求一元二次方程的根的方法叫直接開平方法。新知探究填空(1)x2–8x+()2=(x–)2;(2)y2+5y+()2=(y+)2;(3)x2–x+()2=(x–)2;(4)x2+px+()2=(x+)2.52445254p2p25254新知探究解:∴方程的兩個根為解:∴方程的兩根個為

解下列方程:配方法新知探究根據上面的例題,請你歸納出用配方法解一般一元二次方程應有的步驟.其中,最關鍵的是配哪一項,這一項怎樣確定?①移項,二次項系數化為1;②左邊配成完全平方式;③左邊寫成完全平方形式;④降次;⑤解一次方程.1.如果關于x的方程(x-4)2=m-1可以用直接開平方法求解,那么m的取值范圍是(

)A.m≥1

B.m>1C.m>-1

D.m≥-1A隨堂練習

C3.對于一元二次方程x2=m-1.(1)若方程有兩個不相等的實數根,則m________;(2)若方程有兩個相等的實數根,則m________;(3)若方程無實數根,則m________.>1=1<1m-1>0m-1=0m-1<04.若一元二次方程ax2=b(ab>0)的兩個根分別是

m-1

,

2m+3

,則

m

的值為______.小試牛刀1.方程x2=p能直接開平方的條件是_________,結果為x=_____,

即x1=_____,x2=_______.p≥02.對于方程x2=m-1,(1)若方程有兩個不相等的實數根,則m________;(2)若方程有兩個相等的實數根,則m________;(3)若方程無實數根,則m________.>1=1<1小試牛刀3.解方程16x2-49=0,移項,得___________;二次項系數化

為1,得______;直接開平方,得________.16x2=494.形如(mx+n)2=p(p≥0)的一元二次方程,直接開平方得:

mx+n=_____,把原一元二次方程轉化為兩個一元一次方

程:__________或____________,于是x1=__________,x2=

__________.小試牛刀5.給出一種運算:對于函數y=xn,規定y′=nxn-1,例如:若

函數y=x4,則有y′=4x3.已知函數y=x3,則方程y′=12的解

是(

)A.x1=4,x2=-4 B.x1=2,x2=-2C.x1=x2=0 D.x1=23,x2=-23B6.已知a2-2a+1=0,則a2020等于(

)A.1 B.-1C. D.

D小試牛刀7.一元二次方程(x+6)2=16可化為兩個一元一次方程,其中一個

一元一次方程是x+6=4,則另一個一元一次方程是(

)A.x-6=4B.x-6=-4C.x+6=4D.x+6=-4D小試牛刀8.用直接開平方法解下列方程:(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論