




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年云南省元馬中學中考數(shù)學仿真試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,則下列結論:①a、b同號;②當x=1和x=3時,函數(shù)值相等;③4a+b=1;④當y=﹣2時,x的值只能取1;⑤當﹣1<x<5時,y<1.其中,正確的有()A.2個 B.3個 C.4個 D.5個2.夏新同學上午賣廢品收入13元,記為+13元,下午買舊書支出9元,記為()元.A.+4B.﹣9C.﹣4D.+93.如圖,在⊙O中,直徑CD⊥弦AB,則下列結論中正確的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D4.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經(jīng)過第()象限.A.一 B.二 C.三 D.四5.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-26.直線y=3x+1不經(jīng)過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.一個正多邊形的內角和為900°,那么從一點引對角線的條數(shù)是()A.3 B.4 C.5 D.68.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點,則BC=()A.6 B.6 C.3 D.39.圖1是邊長為1的六個小正方形組成的圖形,它可以圍成圖2的正方體,則圖1中正方形頂點A,B在圍成的正方體中的距離是()A.0 B.1 C. D.10.如圖,點ABC在⊙O上,OA∥BC,∠OAC=19°,則∠AOB的大小為()A.19° B.29° C.38° D.52°11.如圖,是的直徑,是的弦,連接,,,則與的數(shù)量關系為()A. B.C. D.12.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知二次函數(shù)的部分圖象如圖所示,則______;當x______時,y隨x的增大而減小.14.在10個外觀相同的產(chǎn)品中,有2個不合格產(chǎn)品,現(xiàn)從中任意抽取1個進行檢測,抽到合格產(chǎn)品的概率是.15.如圖,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中點,點E在BA的延長線上,連接ED,若AE=2,則DE的長為_____.16.計算:的結果是_____.17.計算(5ab3)2的結果等于_____.18.當a=3時,代數(shù)式的值是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.求證:DE是⊙O的切線;若DE=6cm,AE=3cm,求⊙O的半徑.20.(6分)閱讀下列材料:題目:如圖,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,請用sinA、cosA表示sin2A.21.(6分)發(fā)現(xiàn)如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.22.(8分)如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.23.(8分)已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.24.(10分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.25.(10分)如圖,在航線l的兩側分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)26.(12分)如圖,矩形的兩邊、的長分別為3、8,是的中點,反比例函數(shù)的圖象經(jīng)過點,與交于點.若點坐標為,求的值及圖象經(jīng)過、兩點的一次函數(shù)的表達式;若,求反比例函數(shù)的表達式.27.(12分)如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).(1)求點B,C的坐標;(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)二次函數(shù)的性質和圖象可以判斷題目中各個小題是否成立.【詳解】由函數(shù)圖象可得,
a>1,b<1,即a、b異號,故①錯誤,
x=-1和x=5時,函數(shù)值相等,故②錯誤,
∵-=2,得4a+b=1,故③正確,
由圖象可得,當y=-2時,x=1或x=4,故④錯誤,
由圖象可得,當-1<x<5時,y<1,故⑤正確,
故選A.【點睛】考查二次函數(shù)圖象與系數(shù)的關系,解答本題的關鍵是明確題意,利用二次函數(shù)的性質和數(shù)形結合的思想解答.2、B【解析】
收入和支出是兩個相反的概念,故兩個數(shù)字分別為正數(shù)和負數(shù).【詳解】收入13元記為+13元,那么支出9元記作-9元【點睛】本題主要考查了正負數(shù)的運用,熟練掌握正負數(shù)的概念是本題的關鍵.3、B【解析】
先利用垂徑定理得到弧AD=弧BD,然后根據(jù)圓周角定理得到∠C=∠BOD,從而可對各選項進行判斷.【詳解】解:∵直徑CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故選B.【點睛】本題考查了垂徑定理和圓周角定理,垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.4、B【解析】
根據(jù)反比例函數(shù)的性質得k>0,然后根據(jù)一次函數(shù)的進行判斷直線y=kx-k不經(jīng)過的象限.【詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經(jīng)過第一、三、四象限,即不經(jīng)過第二象限.故選:B.【點睛】考查了待定系數(shù)法求反比例函數(shù)的解析式:設出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質.5、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點:解一元二次方程-因式分解法.6、D【解析】
利用兩點法可畫出函數(shù)圖象,則可求得答案.【詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線與x軸交于點(-,0),與y軸交于點(0,1),其函數(shù)圖象如圖所示,∴函數(shù)圖象不過第四象限,故選:D.【點睛】本題主要考查一次函數(shù)的性質,正確畫出函數(shù)圖象是解題的關鍵.7、B【解析】
n邊形的內角和可以表示成(n-2)?180°,設這個多邊形的邊數(shù)是n,就得到關于邊數(shù)的方程,從而求出邊數(shù),再求從一點引對角線的條數(shù).【詳解】設這個正多邊形的邊數(shù)是n,則
(n-2)?180°=900°,
解得:n=1.
則這個正多邊形是正七邊形.所以,從一點引對角線的條數(shù)是:1-3=4.故選B【點睛】本題考核知識點:多邊形的內角和.解題關鍵點:熟記多邊形內角和公式.8、A【解析】試題分析:根據(jù)垂徑定理先求BC一半的長,再求BC的長.解:如圖所示,設OA與BC相交于D點.∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據(jù)垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點睛:本題主要考查垂徑定理和勾股定理.解題的關鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎.9、C【解析】試題分析:本題考查了勾股定理、展開圖折疊成幾何體、正方形的性質;熟練掌握正方形的性質和勾股定理,并能進行推理計算是解決問題的關鍵.由正方形的性質和勾股定理求出AB的長,即可得出結果.解:連接AB,如圖所示:根據(jù)題意得:∠ACB=90°,由勾股定理得:AB==;故選C.考點:1.勾股定理;2.展開圖折疊成幾何體.10、C【解析】
由AO∥BC,得到∠ACB=∠OAC=19°,根據(jù)圓周角定理得到∠AOB=2∠ACB=38°.【詳解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故選:C.【點睛】本題考查了圓周角定理與平行線的性質.解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應用是解此題的關鍵.11、C【解析】
首先根據(jù)圓周角定理可知∠B=∠C,再根據(jù)直徑所得的圓周角是直角可得∠ADB=90°,然后根據(jù)三角形的內角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,從而得到結果.【詳解】解:∵是的直徑,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故選C.【點睛】本題考查了圓周角定理及其逆定理和三角形的內角和定理,掌握相關知識進行轉化是解題的關鍵.12、C【解析】
根據(jù)平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進行判斷即可【詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【點睛】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關鍵二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3,>1【解析】
根據(jù)函數(shù)圖象與x軸的交點,可求出c的值,根據(jù)圖象可判斷函數(shù)的增減性.【詳解】解:因為二次函數(shù)的圖象過點.
所以,
解得.
由圖象可知:時,y隨x的增大而減小.
故答案為(1).3,(2).>1【點睛】此題考查二次函數(shù)圖象的性質,數(shù)形結合法是解決函數(shù)問題經(jīng)常采用的一種方法,關鍵是要找出圖象與函數(shù)解析式之間的聯(lián)系.14、【解析】
試題分析:根據(jù)概率的意義,用符合條件的數(shù)量除以總數(shù)即可,即.考點:概率15、2【解析】
過點E作EF⊥BC于F,根據(jù)已知條件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根據(jù)勾股定理得到BF=EF=3,求得DF=BF?BD=,根據(jù)勾股定理即可得到結論.【詳解】解:過點E作EF⊥BC于F,∴∠BFE=90°,∵∠BAC=90°,AB=AC=4,∴∠B=∠C=45°,BC=4,∴△BEF是等腰直角三角形,∵BE=AB+AE=6,∴BF=EF=3,∵D是BC的中點,∴BD=2,∴DF=BF?BD,∴DE===2.故答案為2.【點睛】本題考查了等腰直角三角形的性質,勾股定理,正確的作出輔助線構造等腰直角三角形是解題的關鍵.16、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減17、25a2b1.【解析】
代數(shù)式內每項因式均平方即可.【詳解】解:原式=25a2b1.【點睛】本題考查了代數(shù)式的乘方.18、1.【解析】
先根據(jù)分式混合運算順序和運算法則化簡原式,再將a的值代入計算可得.【詳解】原式=÷=?=,當a=3時,原式==1,故答案為:1.【點睛】本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式的混合運算順序和運算法則.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、解:(1)證明見解析;(2)⊙O的半徑是7.5cm.【解析】
(1)連接OD,根據(jù)平行線的判斷方法與性質可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.(2)由直角三角形的特殊性質,可得AD的長,又有△ACD∽△ADE.根據(jù)相似三角形的性質列出比例式,代入數(shù)據(jù)即可求得圓的半徑.【詳解】(1)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD為⊙O的半徑,∴DE是⊙O的切線.(2)解:∵∠AED=90°,DE=6,AE=3,∴.連接CD.∵AC是⊙O的直徑,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.則AC=15(cm).∴⊙O的半徑是7.5cm.考點:切線的判定;平行線的判定與性質;圓周角定理;相似三角形的判定與性質.20、sin2A=2cosAsinA【解析】
先作出直角三角形的斜邊的中線,進而求出,∠CED=2∠A,最后用三角函數(shù)的定義即可得出結論【詳解】解:如圖,作Rt△ABC的斜邊AB上的中線CE,則∴∠CED=2∠A,過點C作CD⊥AB于D,在Rt△ACD中,CD=ACsinA,在Rt△ABC中,AC=ABcosA=cosA在Rt△CED中,sin2A=sin∠CED==2ACsinA=2cosAsinA【點睛】此題主要解直角三角形,銳角三角函數(shù)的定義,直角三角形的斜邊的中線等于斜邊的一半,構造出直角三角形和∠CED=2∠A是解本題的關鍵.21、(1)見解析;(2)見解析;(3)1.【解析】
(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點睛】此題考查多邊形的內角和外角,,解題的關鍵是熟練掌握三角形的外角的性質,屬于中考常考題型22、(1)B(1,0),C(0,﹣4);(2)點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點坐標,令x=0可求得C點坐標;(2)①當PB與⊙相切時,△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質得到=2,設OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標,過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當BC⊥PC時,△PBC為直角三角形,根據(jù)相似三角形的判定和性質即可得到結論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當AP最大時,OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點P,使得△PBC為直角三角形,分兩種情況:①當PB與⊙相切時,△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當BC⊥PC時,△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當AP最大時,OE的值最大,∵當P在AC的延長線上時,AP的值最大,最大值=,∴OE的最大值為.故答案為.23、證明見解析【解析】證明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四邊形ABCD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形).(1)利用兩邊和它們的夾角對應相等的兩三角形全等(SAS),這一判定定理容易證明△AFD≌△CEB.(2)由△AFD≌△CEB,容易證明AD=BC且AD∥BC,可根據(jù)一組對邊平行且相等的四邊形是平行四邊形.24、見解析.【解析】
先證明△AFC為等腰三角形,根據(jù)等腰三角形三線合一證明H為FC的中點,又D為BC的中點,根據(jù)中位線的性質即可證明.【詳解】∵AE為△ABC的角平分線,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,HF=CH,∵AD為△ABC的中線,∴DH是△BCF的中位線,∴DH=BF.【點睛】本題考查三角形中位線定理,等腰三角形的判定與性質.解決本題的關鍵是證明H點為FC的中點,然后利用中位線的性質解決問題.本題中要證明DH=BF,一般三角形中出現(xiàn)這種2倍或關系時,常用中位線的性質解決.25、(1)觀測點到航線的距離為3km(2)該輪船航行的速度約為40.6km/h【解析】試題分析:(1)設AB與l交于點O,利用∠DAO=60°,利用∠DAO的余弦求出OA長,從而求得OB長,繼而求得BE長即可;(2)先計算出DE=EF+DF=求出DE=5,再由進而由tan∠CBE=求出EC,即可求出CD的長,進而求出航行速度.試題解析:(1)設AB與l交于點O,在Rt△AOD中,∵∠OAD=60°,AD=2(km),∴OA==4(km),∵AB=10(km),∴OB=AB﹣OA=6(km),在Rt△BOE中,∠OBE=∠OAD=60°,∴BE=OB?cos60°=3(km),答:觀測點B到航線l的距離為3km;(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年職稱英語考試模擬試卷及答案
- 2025年甘肅省隴南事業(yè)單位招聘啥時候發(fā)布筆試參考題庫及參考答案詳解
- 特殊學生周日管理制度
- 特殊工時安全管理制度
- 特殊旅客安全管理制度
- 特殊肥胖幼兒管理制度
- 獨立單位人員管理制度
- 豬場采血送檢管理制度
- 玩具公司倉庫管理制度
- 環(huán)保數(shù)據(jù)異常管理制度
- 新時代這十年的變化
- 一例心臟瓣膜病患者的病例討論
- 變電運行風險辨識庫
- 北京市建設工程施工現(xiàn)場安全生產(chǎn)標準化管理圖集(2019版)
- 核醫(yī)學工作中輻射防護知識課件
- DB32T 4644.2-2024 從業(yè)人員健康檢查 第2部分:健康檢查技術規(guī)范
- 肺結核大咯血的護理查房課件
- 教師晉升副高職稱申請書范文
- 營區(qū)物業(yè)服務投標方案(技術標)
- 蘇教版四年級數(shù)學下冊期末試題及答案5套
- 數(shù)據(jù)結構第2章-線性表
評論
0/150
提交評論