




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年浙江省杭州濱江區六校聯考中考適應性考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各式正確的是()A. B.C. D.2.﹣3的絕對值是()A.﹣3 B.3 C.- D.3.有一組數據:3,4,5,6,6,則這組數據的平均數、眾數、中位數分別是()A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,64.計算的結果是()A.1 B.﹣1 C.1﹣x D.5.如圖,將△ABC沿著DE剪成一個小三角形ADE和一個四邊形D'E'CB,若DE∥BC,四邊形D'E'CB各邊的長度如圖所示,則剪出的小三角形ADE應是()A. B. C. D.6.的算術平方根是()A.4 B.±4 C.2 D.±27.據統計,2015年廣州地鐵日均客運量均為人次,將用科學記數法表示為()A. B. C. D.8.一、單選題二次函數的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結論有:A.4個 B.3個 C.2個 D.1個9.下面的幾何體中,主(正)視圖為三角形的是()A. B. C. D.10.下列實數為無理數的是()A.-5 B. C.0 D.π二、填空題(共7小題,每小題3分,滿分21分)11.當時,直線與拋物線有交點,則a的取值范圍是_______.12.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小邊的長是2cm,則它的最大邊的長是_____cm.13.若關于x的方程有增根,則m的值是▲14.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.15.如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點處,當△為直角三角形時,BE的長為.16.某社區有一塊空地需要綠化,某綠化組承擔了此項任務,綠化組工作一段時間后,提高了工作效率.該綠化組完成的綠化面積S(單位:m1)與工作時間t(單位:h)之間的函數關系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是_____m1.17.一組數據10,10,9,8,x的平均數是9,則這列數據的極差是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在矩形ABCD中,E是BC邊上的點,,垂足為F.(1)求證:;(2)如果,求的余切值.19.(5分)學校為了提高學生跳遠科目的成績,對全校500名九年級學生開展了為期一個月的跳遠科目強化訓練。王老師為了了解學生的訓練情況,強化訓練前,隨機抽取了該年級部分學生進行跳遠測試,經過一個月的強化訓練后,再次測得這部分學生的跳遠成績,將兩次測得的成績制作成圖所示的統計圖和不完整的統計表(滿分10分,得分均為整數).根據以上信息回答下列問題:訓練后學生成績統計表中n,并補充完成下表:若跳遠成績9分及以上為優秀,估計該校九年級學生訓練后比訓練前達到優秀的人數增加了多少?經調查,經過訓練后得到9分的五名同學中,有三名男生和兩名女生,王老師要從這五名同學中隨機抽取兩名同學寫出訓練報告,請用列表或畫樹狀圖的方法,求所抽取的兩名同學恰好是一男一女的概率.20.(8分)如圖,已知矩形ABCD中,連接AC,請利用尺規作圖法在對角線AC上求作一點E使得△ABC∽△CDE.(保留作圖痕跡不寫作法)21.(10分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數關系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.22.(10分)為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?23.(12分)許昌文峰塔又稱文明寺塔,為全國重點文物保護單位,某校初三數學興趣小組的同學想要利用學過的知識測量文峰塔的高度,他們找來了測角儀和卷尺,在點A處測得塔頂C的仰角為30°,向塔的方向移動60米后到達點B,再次測得塔頂C的仰角為60°,試通過計算求出文峰塔的高度CD.(結果保留兩位小數)24.(14分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數軸上表示出來.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】∵,則B錯;,則C;,則D錯,故選A.2、B【解析】
根據負數的絕對值是它的相反數,可得出答案.【詳解】根據絕對值的性質得:|-1|=1.故選B.【點睛】本題考查絕對值的性質,需要掌握非負數的絕對值是它本身,負數的絕對值是它的相反數.3、C【解析】
解:在這一組數據中6是出現次數最多的,故眾數是6;而將這組數據從小到大的順序排列3,4,5,6,6,處于中間位置的數是5,平均數是:(3+4+5+6+6)÷5=4.8,故選C.【點睛】本題考查眾數;算術平均數;中位數.4、B【解析】
根據同分母分式的加減運算法則計算可得.【詳解】解:原式====-1,故選B.【點睛】本題主要考查分式的加減法,解題的關鍵是熟練掌握同分母分式的加減運算法則.5、C【解析】
利用相似三角形的性質即可判斷.【詳解】設AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴x=9,y=12,故選:C.【點睛】考查平行線的性質,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.6、C【解析】
先求出的值,然后再利用算術平方根定義計算即可得到結果.【詳解】=4,4的算術平方根是2,所以的算術平方根是2,故選C.【點睛】本題考查了算術平方根,熟練掌握算術平方根的定義是解本題的關鍵.7、D【解析】
科學記數法就是將一個數字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數.n為整數位數減1,即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.【詳解】解:6
590
000=6.59×1.故選:D.【點睛】本題考查學生對科學記數法的掌握,一定要注意a的形式,以及指數n的確定方法.8、B【解析】試題解析:①∵二次函數的圖象的開口向下,∴a<0,∵二次函數的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當x=2時的點對稱,即當x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結論有3個.故選B.9、C【解析】
解:圓柱的主視圖是矩形,正方體的主視圖是正方形,圓錐的主視圖是三角形,三棱柱的主視圖是寬相等兩個相連的矩形.故選C.10、D【解析】
無理數就是無限不循環小數.理解無理數的概念,一定要同時理解有理數的概念,有理數是整數與分數的統稱.即有限小數和無限循環小數是有理數,而無限不循環小數是無理數.由此即可判定選擇項.【詳解】A、﹣5是整數,是有理數,選項錯誤;B、是分數,是有理數,選項錯誤;C、0是整數,是有理數,選項錯誤;D、π是無理數,選項正確.故選D.【點睛】此題主要考查了無理數的定義,其中初中范圍內學習的無理數有:π,2π等;開方開不盡的數;以及像0.1010010001…,等有這樣規律的數.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
直線與拋物線有交點,則可化為一元二次方程組利用根的判別式進行計算.【詳解】解:法一:與拋物線有交點則有,整理得解得,對稱軸法二:由題意可知,∵拋物線的頂點為,而∴拋物線y的取值為,則直線y與x軸平行,∴要使直線與拋物線有交點,∴拋物線y的取值為,即為a的取值范圍,∴故答案為:【點睛】考查二次函數圖象的性質及交點的問題,此類問題,通常可化為一元二次方程,利用根的判別式或根與系數的關系進行計算.12、1.【解析】
根據在△ABC中,∠A:∠B:∠C=1:2:3,三角形內角和等于180°可得∠A,∠B,∠C的度數,它的最小邊的長是2cm,從而可以求得最大邊的長.【詳解】∵在△ABC中,∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180∴∠A=30∵最小邊的長是2cm,∴a=2.∴c=2a=1cm.故答案為:1.【點睛】考查含30度角的直角三角形的性質,掌握30度角所對的直角邊等于斜邊的一半是解題的關鍵.13、1.【解析】方程兩邊都乘以最簡公分母(x-2),把分式方程化為整式方程,再根據分式方程的增根就是使最簡公分母等于1的未知數的值求出x的值,然后代入進行計算即可求出m的值:方程兩邊都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.14、(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,則(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案為(y﹣1)1(x﹣1)1.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.15、1或.【解析】
當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,先利用勾股定理計算出AC=5,根據折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=1,可計算出CB′=2,設BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.
②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.【詳解】當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△CEB′為直角三角形時,只能得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
設BE=x,則EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②當點B′落在AD邊上時,如答圖2所示.
此時ABEB′為正方形,∴BE=AB=1.
綜上所述,BE的長為或1.
故答案為:或1.16、150【解析】設綠化面積與工作時間的函數解析式為,因為函數圖象經過,兩點,將兩點坐標代入函數解析式得得,將其代入得,解得,∴一次函數解析式為,將代入得,故提高工作效率前每小時完成的綠化面積為.17、1【解析】
先根據平均數求出x,再根據極差定義可得答案.【詳解】由題意知=9,解得:x=8,∴這列數據的極差是10-8=1,故答案為1.【點睛】本題主要考查平均數和極差,熟練掌握平均數的計算得出x的值是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(2).【解析】
(1)矩形的性質得到,得到,根據定理證明;(2)根據全等三角形的性質、勾股定理、余切的定義計算即可.【詳解】解:(1)證明:四邊形是矩形,,,在和中,,,;(2),,設,,,,,,,,.【點睛】本題考查的是矩形的性質、勾股定理的運用、全等三角形的判定和性質以及余切的定義,掌握全等三角形的判定定理和性質定理是解題的關鍵.19、(1)n=3,見解析;(2)125人;(3)P=【解析】
(1)利用強化訓練前后人數不變計算n的值;利用中位數對應計算強化訓練前的中位數;利用平均數的計算方法計算強化訓練后的平均分;利用眾數的定義確定強化訓練后的眾數;(2)用500分別乘以樣本中訓練前后優秀的人數的百分比,然后求差即可;(3)畫樹狀圖展示所有20種等可能的結果數,再找出所抽取的兩名同學恰好是一男一女的結果數,然后根據概率公式求解.【詳解】(1)解:(1)n=20-1-3-8-5=3;強化訓練前的中位數7+82強化訓練后的平均分為120強化訓練后的眾數為8,故答案為3;7.5;8.3;8;(2)500×5+3(3)(3)畫樹狀圖為:共有20種等可能的結果數,其中所抽取的兩名同學恰好是一男一女的結果數為12,所以所抽取的兩名同學恰好是一男一女的概率P=1220【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式計算事件A或事件B的概率.也考查了統計圖.20、詳見解析【解析】
利用尺規過D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【詳解】解:過D作DE⊥AC,如圖所示,△CDE即為所求:【點睛】本題主要考查了尺規作圖,相似三角形的判定,解決問題的關鍵是掌握相似三角形的判定方法.21、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】
(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當x=時,S有最大值,最大值為.(3)存在,如圖所示,設點P的坐標為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應點為點F,F落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標為(4,0)或(,0).【點睛】此題考查了待定系數法求函數解析式,點坐標轉換為線段長度,幾何圖形與二次函數結合的問題,最后一問推出CG=HG為解題關鍵.22、(1)甲、乙兩種套房每套提升費用為25、1萬元;(2)甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【解析】
(1)設甲種套房每套提升費用為x萬元,根據題意建立方程求出其解即可;(2)設甲種套房提升m套,那么乙種套房提升(80-m)套,根據條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數關系式,根據一次函數的性質就可以求出結論.【詳解】(1)設乙種套房提升費用為x萬元,則甲種套房提升費用為(x﹣3)萬元,則,解得x=1.經檢驗:x=1是分式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 漁業捕撈權轉讓合同
- 高端酒店客房預訂管理軟件開發協議
- 中小學校道德領導的定義與內涵探討
- 《數學幾何深化:空間幾何與解析幾何教學》
- 網絡內容審核與管理規范
- 醫學影像學放射影像解讀知識考點
- 資源消耗一資源消耗統計表格
- 力學概念入門:高中物理力學課程教案
- 供應鏈管理績效評估表(年度)
- 建筑學建筑構造專項知識考核點
- 【MOOC】線性代數-華北理工大學 中國大學慕課MOOC答案
- 糖尿病足鞋墊研究報告
- 媒介經營與管理完整課件
- 康復治療生理學呼吸系統
- 上海市市轄區(2024年-2025年小學五年級語文)人教版期末考試((上下)學期)試卷及答案
- 預應力混凝土方樁施工方案
- 臨建集裝箱項目施工部署方案
- 11ZJ311地下室防水圖集
- 土地整治實施操作手冊
- GB 30254-2024高壓三相籠型異步電動機能效限定值及能效等級
- 環境檢測實驗室分析人員績效考核方案
評論
0/150
提交評論