




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
專項28反比例圖像與一次函數綜合應用(三大類型)考點反比例與一次函數的綜合方法2:四個圖逐個分析判斷;方法3:運用特殊點(值)去排除(此種方法作參考,不能完全排三選一)【類型一:反比例圖形與一次函數圖形】【典例1】反比例函數y=與一次函數y=ax+b在同一坐標系中的大致圖象可能是()A. B. C. D.【變式11】在同一平面直角坐標系中,函數y=x和y=﹣的圖象大致是()A. B. C. D.【變式12】在同一平面直角坐標系中反比例函數y=與一次函數y=x+3的圖象大致是()A. B. C. D.【類型二:反比例函數與一次函數的大小比較】【典例2】(2022?普陀區校級開學)如圖,一次函數y1=kx+b的圖象與反比例函數的圖象相交于點A(,4)和點B(3,n).若y1<y2,則x的取值范圍是()A.x<0或<x<3 B.x<或x>3 C.0<x<或x>3 D.x<0或x>3【變式21】(2022?東營)如圖,一次函數y1=k1x+b與反比例函數y2=的圖象相交于A,B兩點,點A的橫坐標為2,點B的橫坐標為﹣1,則不等式k1x+b<的解集是()A.﹣1<x<0或x>2 B.x<﹣1或0<x<2 C.x<﹣1或x>2 D.﹣1<x<2【變式22】(2022?朝陽)如圖,正比例函數y=ax(a為常數,且a≠0)和反比例函數y=(k為常數,且k≠0)的圖象相交于A(﹣2,m)和B兩點,則不等式ax>的解集為()A.x<﹣2或x>2 B.﹣2<x<2 C.﹣2<x<0或x>2 D.x<﹣2或0<x<2【變式23】(2022?渠縣一模)如圖,直線y=ax+b與函數y=(x>0)的圖象交于A(1,m)、B(n,1)兩點,與x軸交于點C,且,則不等式ax+b>的解集在數軸上表示正確的是()A. B. C. D.【類型三:反比例函數與一次函數綜合應用】【典例3】(2022?大足區模擬)如圖,一次函數y=k1x+b(k1≠0)與反比例函數(k2≠0)的圖象交于點A(﹣1,3),B(n,﹣1),與x軸交于點C.(1)求反比例函數和一次函數的解析式;(2)點P在x軸上,且滿足S△APB=8,求點P的坐標.【變式31】(2022?咸豐縣模擬)如圖,平面直角坐標系xOy中,函數的圖象上A、B兩點的坐標分別為A(n,n+1),B(n﹣5,﹣2n).(1)求反比例函數和直線AB的解析式;(2)連接AO、BO,求△AOB的面積.【變式32】(2021秋?金水區校級期末)在平面直角坐標系中,四邊形AOBC為矩形,且點C坐標為(8,6),M為BC中點,反比例函數y=(k是常數,k≠0)的圖象經過點M,交AC于點N,連接OM、ON.(1)求反比例函數表達式.(2)求△MON的面積.1.函數y=x﹣a與y=(a≠0)在同一坐標系內的圖象可以是()A. B. C. D.2.(2014?無錫一模)如圖,A是反比例函數y=圖象上一點,過點A作AB⊥y軸于點B,點P在x軸上,△ABP的面積為2,則k的值為()A.1 B.2 C.3 D.43.(2021?長沙模擬)雙曲線與在第一象限內的圖象如圖所示,作一條平行于y軸的直線分別交雙曲線于A、B兩點,連接OA、OB,則△AOB的面積為()A.1 B.2 C.3 D.44.(2022?江漢區校級模擬)若一次函數y=kx+b和反比例函數y=(m<0)的圖象交于點A(﹣3,y1),B(1,y2),則不等式kx2+bx﹣m<0的解集是()A.x>1或x<﹣3 B.0<x<1或x<﹣3 C.﹣3<x<0或x>1 D.﹣3<x<0或0<x<15.(2022春?安溪縣期末)如圖,反比例函數y1=和正比例函數y2=kx的圖象交于A(﹣1,﹣3)、B(1,3)兩點,若<k2x,則x的取值范圍是()A.﹣1<x<0 B.﹣1<x<1 C.﹣1<x<0或x>1 D.x<﹣1或0<x<16.(2022?沈陽模擬)如圖,點A,B分別是x軸上的兩點,點C,D分別是反比例函數y=(x>0),y=﹣(x<0)圖象上的兩點,且四邊形ABCD是平行四邊形,則平行四邊形ABCD的面積為.7.(2022?市南區二模)如圖,兩個反比例函數y=和y=﹣的圖象分別是l1和l2.設點P在l1上,PC⊥x軸,垂足為C,交l2于點A,PD⊥y軸,垂足為D,交l2于點B,則△PAB的面積為.8.(2022秋?雙牌縣校級月考)如圖,直線y1=k1x+b與雙曲線相交于A(1,2)、B(m,﹣1)兩點.(1)求直線和雙曲線的解析式;(2)求△AOB的面積;(3)觀察圖象,請直接寫出當y1<y2時,x的取值范圍.9.(2022秋?寧遠縣校級月考)如圖,一次函數y=﹣x+b的圖象與反比例函數y=的圖象交于A、B兩點,且A點坐標為(﹣2,1),點B的橫坐標為1,一次函數交x軸于點C.(1)試確定上述反比例函數和一次函數的表達式;(2)求△AOB的面積;(3)直接寫出使反比例函數大于一次函數的x的取值范圍.10.(2022?南充)如圖,直線AB與雙曲線交于A(1,6),B(m,﹣2)兩點,直線BO與雙曲線在第一象限交于點C,連接AC.(1)求直線AB與雙曲線的解析式.(2)求△ABC的面積.11.(2022?富陽區一模)如圖,一次函數y=kx+b的圖象與反
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東省江門市新會第二中學 2023-2024學年七年級上學期期中考試道德與法治試題(含答案)
- 工業地產投資與運營分析
- 工業廢水處理技術研究-環保產業發展趨勢
- 工業機器人維護與保養教程
- 工業廢水處理及回用技術研究
- 工業自動化硬件解決方案
- 工業設備智能化改造與升級
- 工業物聯網的創新發展與應用案例
- 工業自動化與智能制造的關系
- 工業設計中的材料選擇與創新
- 非遺纏花創新創業
- 第三方轉移支付協議
- 礦山測量工培訓
- 施工分包商入庫管理細則
- 政府會計知到課后答案智慧樹章節測試答案2025年春湘潭大學
- 《自然的禮物》(教學設計)-2024-2025學年人美版(2024)美術一年級下冊
- 2024年甘肅蘭州中考滿分作文《砥礪前行扎根未來》
- 《特種設備重大事故隱患判定準則》知識培訓
- EOD項目如何立項
- 2025中考復習必背初中英語單詞1600打印版(上)
- 《LCD生產工藝》課件
評論
0/150
提交評論