2024屆福建省三明市寧化縣市級名校中考數學模試卷含解析_第1頁
2024屆福建省三明市寧化縣市級名校中考數學模試卷含解析_第2頁
2024屆福建省三明市寧化縣市級名校中考數學模試卷含解析_第3頁
2024屆福建省三明市寧化縣市級名校中考數學模試卷含解析_第4頁
2024屆福建省三明市寧化縣市級名校中考數學模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆福建省三明市寧化縣市級名校中考數學模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各類數中,與數軸上的點存在一一對應關系的是()A.有理數B.實數C.分數D.整數2.已知方程x2﹣x﹣2=0的兩個實數根為x1、x2,則代數式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣13.我國“神七”在2008年9月26日順利升空,宇航員在27日下午4點30分在距離地球表面423公里的太空中完成了太空行走,這是我國航天事業的又一歷史性時刻.將423公里用科學記數法表示應為()米.A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×1064.下列二次根式中,是最簡二次根式的是()A. B. C. D.5.下列計算正確的是()A.a2+a2=a4 B.(-a2)3=a6C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b6.下列圖形中,既是中心對稱,又是軸對稱的是()A. B. C. D.7.一次函數的圖象上有點和點,且,下列敘述正確的是A.若該函數圖象交y軸于正半軸,則B.該函數圖象必經過點C.無論m為何值,該函數圖象一定過第四象限D.該函數圖象向上平移一個單位后,會與x軸正半軸有交點8.兩個同心圓中大圓的弦AB與小圓相切于點C,AB=8,則形成的圓環的面積是()A.無法求出 B.8 C.8 D.169.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.10.下列幾何體中,俯視圖為三角形的是()A. B. C. D.11.如圖,是由幾個大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數字表示在該位置的小立方塊的個數,則這個幾何體的主視圖是()A. B. C. D.12.如圖,AB∥CD,點E在線段BC上,若∠1=40°,∠2=30°,則∠3的度數是()A.70° B.60° C.55° D.50°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.14.在平面直角坐標系中,點A的坐標是(-1,2).作點A關于x軸的對稱點,得到點A1,再將點A1向下平移4個單位,得到點A2,則點A2的坐標是_________.15.用一直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽可以制成一個不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).16.如圖,在△ACB中,∠ACB=90°,點D為AB的中點,將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.若AC=6,BC=8,則DB1的長為________.17.一組數據10,10,9,8,x的平均數是9,則這列數據的極差是_____.18.Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個頂點都在Rt△ABC的邊上,當矩形DEFG的面積最大時,其對角線的長為_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F是AE與⊙O的交點,AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.20.(6分)我國古代數學著作《增刪算法統宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.21.(6分)(操作發現)(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于30°),旋轉后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.①求∠EAF的度數;②DE與EF相等嗎?請說明理由;(類比探究)(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于45°),旋轉后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.請直接寫出探究結果:①∠EAF的度數;②線段AE,ED,DB之間的數量關系.22.(8分)如圖,四邊形ABCD內接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當AB=8,CE=2時,求AC的長.23.(8分)在一節數學活動課上,王老師將本班學生身高數據(精確到1厘米)出示給大家,要求同學們各自獨立繪制一幅頻數分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經王老師批改,甲繪制的圖是正確的,乙在數據整理與繪圖過程中均有個別錯誤.寫出乙同學在數據整理或繪圖過程中的錯誤(寫出一個即可);甲同學在數據整理后若用扇形統計圖表示,則159.5﹣164.5這一部分所對應的扇形圓心角的度數為;該班學生的身高數據的中位數是;假設身高在169.5﹣174.5范圍的5名同學中,有2名女同學,班主任老師想在這5名同學中選出2名同學作為本班的正、副旗手,那么恰好選中一名男同學和一名女同學當正,副旗手的概率是多少?24.(10分)某中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.若平行于墻的一邊長為y米,直接寫出y與x的函數關系式及其自變量x的取值范圍.垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.25.(10分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數軸的正半軸上運動,點B在數軸上所表示的數為m.當半圓D與數軸相切時,m=.半圓D與數軸有兩個公共點,設另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.26.(12分)已知平行四邊形.尺規作圖:作的平分線交直線于點,交延長線于點(要求:尺規作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.27.(12分)先化簡,再求值:(1﹣)÷,其中a=﹣1.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據實數與數軸上的點存在一一對應關系解答.【詳解】實數與數軸上的點存在一一對應關系,故選:B.【點睛】本題考查了實數與數軸上點的關系,每一個實數都可以用數軸上唯一的點來表示,反過來,數軸上的每個點都表示一個唯一的實數,也就是說實數與數軸上的點一一對應.2、D【解析】分析:根據一元二次方程根與系數的關系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數的關系,若x1,x2為方程的兩個根,則x1,x2與系數的關系式:,.3、C【解析】423公里=423000米=4.23×105米.故選C.4、B【解析】

根據最簡二次根式必須滿足兩個條件:(1)被開方數不含分母;(2)被開方數不含能開得盡方的因數或因式判斷即可.【詳解】A、=4,不符合題意;B、是最簡二次根式,符合題意;C、=,不符合題意;D、=,不符合題意;故選B.【點睛】本題考查最簡二次根式的定義.最簡二次根式必須滿足兩個條件:(1)被開方數不含分母;(2)被開方數不含能開得盡方的因數或因式.5、D【解析】

各項計算得到結果,即可作出判斷.【詳解】A、原式=2a2,不符合題意;B、原式=-a6,不符合題意;C、原式=a2+2ab+b2,不符合題意;D、原式=-4b,符合題意,故選:D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.6、C【解析】

根據中心對稱圖形,軸對稱圖形的定義進行判斷.【詳解】A、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形,軸對稱圖形的判斷.關鍵是根據圖形自身的對稱性進行判斷.7、B【解析】

利用一次函數的性質逐一進行判斷后即可得到正確的結論.【詳解】解:一次函數的圖象與y軸的交點在y軸的正半軸上,則,,若,則,故A錯誤;

把代入得,,則該函數圖象必經過點,故B正確;

當時,,,函數圖象過一二三象限,不過第四象限,故C錯誤;

函數圖象向上平移一個單位后,函數變為,所以當時,,故函數圖象向上平移一個單位后,會與x軸負半軸有交點,故D錯誤,

故選B.【點睛】本題考查了一次函數圖象上點的坐標特征、一次函數圖象與幾何變換,解題的關鍵是熟練掌握一次函數的性質,靈活應用這些知識解決問題,屬于中考常考題型.8、D【解析】試題分析:設AB于小圓切于點C,連接OC,OB.∵AB于小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點:1.垂徑定理的應用;2.切線的性質.9、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.10、C【解析】

俯視圖是從上面所看到的圖形,可根據各幾何體的特點進行判斷.【詳解】A.圓錐的俯視圖是圓,中間有一點,故本選項不符合題意,B.幾何體的俯視圖是長方形,故本選項不符合題意,C.三棱柱的俯視圖是三角形,故本選項符合題意,D.圓臺的俯視圖是圓環,故本選項不符合題意,故選C.【點睛】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關鍵.11、C【解析】

由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,據此可得.【詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,所以其主視圖為:故選C.【點睛】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.12、A【解析】試題分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故選A.考點:平行線的性質.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

根據等邊三角形的性質可得OC=AC,∠ABD=30°,根據“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據直角三角形的性質可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點睛】本題考查了全等三角形的判定和性質,等邊三角形的性質,熟練運用全等三角形的判定是本題的關鍵.14、(-1,-6)【解析】

直接利用關于x軸對稱點的性質得出點A1坐標,再利用平移的性質得出答案.【詳解】∵點A的坐標是(-1,2),作點A關于x軸的對稱點,得到點A1,

∴A1(-1,-2),

∵將點A1向下平移4個單位,得到點A2,

∴點A2的坐標是:(-1,-6).

故答案為:(-1,-6).【點睛】解決本題的關鍵是掌握好對稱點的坐標規律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數.15、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長=1×π,側面面積=×1×π×11=.點睛:利用勾股定理可求得圓錐的母線長,進而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側面積=底面周長×母線長÷1.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉化為數學問題求解是本題的解題關鍵.16、2【解析】

根據勾股定理可以得出AB的長度,從而得知CD的長度,再根據旋轉的性質可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點D為AB的中點,∴,∵將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.【點睛】本題考查的是勾股定理、直角三角形斜邊中點的性質和旋轉的性質,能夠根據勾股定理求出AB的長是解題的關鍵.17、1【解析】

先根據平均數求出x,再根據極差定義可得答案.【詳解】由題意知=9,解得:x=8,∴這列數據的極差是10-8=1,故答案為1.【點睛】本題主要考查平均數和極差,熟練掌握平均數的計算得出x的值是解題的關鍵.18、或【解析】

分兩種情形畫出圖形分別求解即可解決問題【詳解】情況1:如圖1中,四邊形DEFG是△ABC的內接矩形,設DE=CF=x,則BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x?(3-x)=﹣(x-)2+3∴x=時,矩形的面積最大,最大值為3,此時對角線=.情況2:如圖2中,四邊形DEFG是△ABC的內接矩形,設DE=GF=x,作CH⊥AB于H,交DG于T.則CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=時,矩形的面積最大為3,此時對角線==∴矩形面積的最大值為3,此時對角線的長為或故答案為或【點睛】本題考查相似三角形的應用、矩形的性質、二次函數的最值等知識,解題的關鍵是學會用分類討論的思想思考問題三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)陰影部分的面積為.【解析】

(1)連接OC,先證明∠OAC=∠OCA,進而得到OC∥AE,于是得到OC⊥CD,進而證明DE是⊙O的切線;(2)分別求出△OCD的面積和扇形OBC的面積,利用S陰影=S△COD﹣S扇形OBC即可得到答案.【詳解】解:(1)連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵點C在圓O上,OC為圓O的半徑,∴CD是圓O的切線;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S陰影=S△COD﹣S扇形OBC∴S陰影=8﹣,∴陰影部分的面積為8﹣.20、繩索長為20尺,竿長為15尺.【解析】

設索長為x尺,竿子長為y尺,根據“索比竿子長一托,對折索子來量竿,卻比竿子短一托”,即可得出關于x、y的二元一次方程組,解之即可得出結論.【詳解】設繩索長、竿長分別為尺,尺,依題意得:解得:,.答:繩索長為20尺,竿長為15尺.【點睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.21、(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1【解析】試題分析:(1)①由等邊三角形的性質得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,證明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF即可;(1)①由等腰直角三角形的性質得出AC=BC,∠BAC=∠B=45°,證出∠ACF=∠BCD,由SAS證明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②證出∠DCE=∠FCE,由SAS證明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出結論.試題解析:解:(1)①∵△ABC是等邊三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE1+DB1=DE1,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,AE1+AF1=EF1,又∵AF=DB,∴AE1+DB1=DE1.22、(1)證明見解析;(2)AC的長為.【解析】

(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結論;(2)先判斷出AC⊥BD,進而求出BC=AB=8,進而判斷出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判斷出△CFD∽△BCD,即可得出結論.【詳解】(1)如圖,連接BD,∵∠BAD=90°,∴點O必在BD上,即:BD是直徑,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=1.在Rt△BCD中,BD==1,同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2C=.【點睛】考查了圓周角定理,垂徑定理,相似三角形的判定和性質,切線的判定和性質,勾股定理,求出BC=8是解本題的關鍵.23、(1)乙在整理數據時漏了一個數據,它在169.5﹣﹣174.5內;(答案不唯一);(2)120°;(3)160或1;(4).【解析】

(1)對比圖①與圖②,找出圖②中與圖①不相同的地方;(2)則159.5﹣164.5這一部分的人數占全班人數的比乘以360°;(3)身高排序為第30和第31的兩名同學的身高的平均數;(4)用樹狀圖法求概率.【詳解】解:(1)對比甲乙的直方圖可得:乙在整理數據時漏了一個數據,它在169.5﹣﹣174.5內;(答案不唯一)(2)根據頻數分布直方圖中每一組內的頻數總和等于總數據個數;將甲的數據相加可得10+15+20+10+5=60;由題意可知159.5﹣164.5這一部分所對應的人數為20人,所以這一部分所對應的扇形圓心角的度數為20÷60×360=120°,故答案為120°;(3)根據中位數的求法,將甲的數據從小到大依次排列,可得第30與31名的數據在第3組,由乙的數據知小于162的數據有36個,則這兩個只能是160或1.故答案為160或1;(4)列樹狀圖得:P(一男一女)==.24、112.1【解析】試題分析:(1)根據題意即可求得y與x的函數關系式為y=30﹣2x與自變量x的取值范圍為6≤x<11;(2)設矩形苗圃園的面積為S,由S=xy,即可求得S與x的函數關系式,根據二次函數的最值問題,即可求得這個苗圃園的面積最大值.試題解析:解:(1)y=30﹣2x(6≤x<11).(2)設矩形苗圃園的面積為S,則S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴當x=7.1時,S最大值=112.1,即當矩形苗圃園垂直于墻的一邊的長為7.1米時,這個苗圃園的面積最大,這個最大值為112.1.點睛:此題考查了二次函數的實際應用問題.解題的關鍵是根據題意構建二次函數模型,然后根據二次函數的性質求解即可.25、(1);(2)①;②△AOB與半圓D的公共部分的面積為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論