2024屆甘肅省定西市隴西縣中考數學四模試卷含解析_第1頁
2024屆甘肅省定西市隴西縣中考數學四模試卷含解析_第2頁
2024屆甘肅省定西市隴西縣中考數學四模試卷含解析_第3頁
2024屆甘肅省定西市隴西縣中考數學四模試卷含解析_第4頁
2024屆甘肅省定西市隴西縣中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

VIP免費下載

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆甘肅省定西市隴西縣中考數學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.有四包真空包裝的火腿腸,每包以標準質量450g為基準,超過的克數記作正數,不足的克數記作負數.下面的數據是記錄結果,其中與標準質量最接近的是()A.+2 B.﹣3 C.+4 D.﹣12.一個正方體的平面展開圖如圖所示,將它折成正方體后“建”字對面是()A.和 B.諧 C.涼 D.山3.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學記數法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣64.一個關于x的一元一次不等式組的解集在數軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥35.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.6.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠07.若分式在實數范圍內有意義,則實數的取值范圍是()A. B. C. D.8.如圖是一個小正方體的展開圖,把展開圖折疊成小正方體后,有“我”字的一面相對面上的字是()A.國 B.厲 C.害 D.了9.如圖,在正方形ABCD外側,作等邊三角形ADE,AC,BE相交于點F,則∠BFC為()A.75° B.60° C.55° D.45°10.如圖,4張如圖1的長為a,寬為b(a>b)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿足()A.a= B.a=2b C.a=b D.a=3b二、填空題(本大題共6個小題,每小題3分,共18分)11.觀察下列一組數:,它們是按一定規律排列的,那么這一組數的第n個數是_____.12.當x=_____時,分式值為零.13.受益于電子商務發展和法治環境改善等多重因素,快遞業務迅猛發展.預計達州市2018年快遞業務量將達到5.5億件,數據5.5億用科學記數法表示為_____.14.如圖,在3×3的正方形網格中,點A,B,C,D,E,F,G都是格點,從C,D,E,F,G五個點中任意取一點,以所取點及AB為頂點畫三角形,所畫三角形時等腰三角形的概率是_____.15.如圖,直線y1=mx經過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.16.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.18.(8分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.19.(8分)如圖1,已知拋物線y=ax2+bx(a≠0)經過A(6,0)、B(8,8)兩點.(1)求拋物線的解析式;(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標;(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標平面內有點P,求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).20.(8分)某村大力發展經濟作物,其中果樹種植已初具規模,該村果農小張種植了黃桃樹和蘋果樹,為進一步優化種植結構,小張將前年和去年兩種水果的銷售情況進行了對比:前年黃桃的市場銷售量為1000千克,銷售均價為6元/千克,去年黃桃的市場銷售量比前年減少了m%(m≠0),銷售均價與前年相同;前年蘋果的市場銷售量為2000千克,銷售均價為4元/千克,去年蘋果的市場銷售量比前年增加了2m%,但銷售均價比前年減少了m%.如果去年黃桃和蘋果的市場銷售總金額與前年黃桃和蘋果的市場銷售總金額相同,求m的值.21.(8分)如圖,點G是正方形ABCD對角線CA的延長線一點,對角線BD與AC交于點O,以線段AG為邊作一個正方形AEFG,連接EB、GD.(1)求證:EB=GD;(2)若AB=5,AG=2,求EB的長.22.(10分)某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數,成績達到6分或6分以上為合格,達到9分或10分為優秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統計圖和成績統計分析表如下,其中七年級代表隊得6分、10分的選手人數分別為a、b.隊別平均分中位數方差合格率優秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據圖表中的數據,求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優秀率均高于八年級;所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.23.(12分)當x取哪些整數值時,不等式與4﹣7x<﹣3都成立?24.在平面直角坐標系xOy中,將拋物線(m≠0)向右平移個單位長度后得到拋物線G2,點A是拋物線G2的頂點.(1)直接寫出點A的坐標;(2)過點(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點.①當∠BAC=90°時.求拋物線G2的表達式;②若60°<∠BAC<120°,直接寫出m的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質量是-1的工件最接近標準工件.故選D.2、D【解析】分析:本題考查了正方體的平面展開圖,對于正方體的平面展開圖中相對的面一定相隔一個小正方形,據此作答.詳解:對于正方體的平面展開圖中相對的面一定相隔一個小正方形,由圖形可知,與“建”字相對的字是“山”.故選:D.點睛:注意正方體的空間圖形,從相對面入手,分析及解答問題.3、D【解析】

根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).【詳解】解:0.0000025第一個有效數字前有6個0(含小數點前的1個0),從而.故選D.4、C【解析】試題解析:一個關于x的一元一次不等式組的解集在數軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點:在數軸上表示不等式的解集.5、D【解析】

根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.6、D【解析】

根據二次根式由意義的條件是:被開方數大于或等于1,和分母不等于1,即可求解.【詳解】根據題意得:,解得:x≥-1且x≠1.故選:D.【點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數是非負數.7、D【解析】

根據分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點睛】本題考查分式有意義的條件,解題的關鍵是熟練運用分式有意義的條件,本題屬于基礎題型.8、A【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點作答.【詳解】∴有“我”字一面的相對面上的字是國.故答案選A.【點睛】本題考查的知識點是專題:正方體相對兩個面上的文字,解題的關鍵是熟練的掌握正方體相對兩個面上的文字.9、B【解析】

由正方形的性質和等邊三角形的性質得出∠BAE=150°,AB=AE,由等腰三角形的性質和內角和定理得出∠ABE=∠AEB=15°,再運用三角形的外角性質即可得出結果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【點睛】本題考查了正方形的性質、等邊三角形的性質、等腰三角形的判定與性質、三角形的外角性質;熟練掌握正方形和等邊三角形的性質,并能進行推理計算是解決問題的關鍵.10、B【解析】

從圖形可知空白部分的面積為S2是中間邊長為(a﹣b)的正方形面積與上下兩個直角邊為(a+b)和b的直角三角形的面積,再與左右兩個直角邊為a和b的直角三角形面積的總和,陰影部分的面積為S1是大正方形面積與空白部分面積之差,再由S2=2S1,便可得解.【詳解】由圖形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故選B.【點睛】本題主要考查了求陰影部分面積和因式分解,關鍵是正確列出陰影部分與空白部分的面積和正確進行因式分解.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】試題解析:根據題意得,這一組數的第個數為:故答案為點睛:觀察已知一組數發現:分子為從1開始的連續奇數,分母為從2開始的連續正整數的平方,寫出第個數即可.12、﹣1.【解析】試題解析:分式的值為0,則:解得:故答案為13、5.5×1.【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.詳解:5.5億=550000000=5.5×1,故答案為5.5×1.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14、.【解析】

找出從C,D,E,F,G五個點中任意取一點組成等腰三角形的個數,再根據概率公式即可得出結論.【詳解】∵從C,D,E,F,G五個點中任意取一點共有5種情況,其中A、B、C;A、B、F兩種取法,可使這三定組成等腰三角形,∴所畫三角形時等腰三角形的概率是,故答案是:.【點睛】考查的是概率公式,熟記隨機事件A的概率P(A)=事件A可能出現的結果數與所有可能出現的結果數的商是解答此題的關鍵.15、-4<x<1【解析】將P(1,1)代入解析式y1=mx,先求出m的值為,將Q點縱坐標y=1代入解析式y=x,求出y1=mx的橫坐標x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.

故答案為-4<x<1.

點睛:本題考查了一次函數與一元一次不等式,求出函數圖象的交點坐標及函數與x軸的交點坐標是解題的關鍵.16、50【解析】

由CD是⊙O的直徑,弦AB⊥CD,根據垂徑定理的即可求得

=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,

∴=,

∵∠BCD=25°=,

∴∠AOD=2∠BCD=50°,

故答案為50【點睛】本題考查角度的求解,解題的關鍵是利用垂徑定理.三、解答題(共8題,共72分)17、(1)詳見解析;(2)菱形;(3)當∠A=45°,四邊形BECD是正方形.【解析】

(1)先求出四邊形ADEC是平行四邊形,根據平行四邊形的性質推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據菱形的判定推出即可;(3)求出∠CDB=90°,再根據正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四邊形,∵∠ACB=90°,D是AB中點,∴BD=CD,(斜邊中線等于斜邊一半)∴四邊形BECD是菱形;(3)若D為AB中點,則當∠A=45°時,四邊形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四邊形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,故答案為45°.【點睛】本題考查了平行四邊形的判定與性質,菱形的判定、正方形的判定,直角三角形斜邊中線的性質等,綜合性較強,熟練掌握和靈活運用相關知識是解題的關鍵.18、(1)每部型手機的銷售利潤為元,每部型手機的銷售利潤為元;(2)①;②手機店購進部型手機和部型手機的銷售利潤最大;(3)手機店購進部型手機和部型手機的銷售利潤最大.【解析】

(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元,根據題意列出方程組求解即可;(2)①根據總利潤=銷售A型手機的利潤+銷售B型手機的利潤即可列出函數關系式;②根據題意,得,解得,根據一次函數的增減性可得當當時,取最大值;(3)根據題意,,,然后分①當時,②當時,③當時,三種情況進行討論求解即可.【詳解】解:(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.根據題意,得,解得答:每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.(2)①根據題意,得,即.②根據題意,得,解得.,,隨的增大而減小.為正整數,當時,取最大值,.即手機店購進部型手機和部型手機的銷售利潤最大.(3)根據題意,得.即,.①當時,隨的增大而減小,當時,取最大值,即手機店購進部型手機和部型手機的銷售利潤最大;②當時,,,即手機店購進型手機的數量為滿足的整數時,獲得利潤相同;③當時,,隨的增大而增大,當時,取得最大值,即手機店購進部型手機和部型手機的銷售利潤最大.【點睛】本題主要考查一次函數的應用,二元一次方程組的應用,解此題的關鍵在于熟練掌握一次函數的增減性.19、(1)拋物線的解析式是y=x2﹣3x;(2)D點的坐標為(4,﹣4);(3)點P的坐標是()或().【解析】試題分析:(1)利用待定系數法求二次函數解析式進而得出答案即可;

(2)首先求出直線OB的解析式為y=x,進而將二次函數以一次函數聯立求出交點即可;

(3)首先求出直線A′B的解析式,進而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,進而求出點P1的坐標,再利用翻折變換的性質得出另一點的坐標.試題解析:(1)∵拋物線y=ax2+bx(a≠0)經過A(6,0)、B(8,8)∴將A與B兩點坐標代入得:,解得:,∴拋物線的解析式是y=x2﹣3x.(2)設直線OB的解析式為y=k1x,由點B(8,8),得:8=8k1,解得:k1=1∴直線OB的解析式為y=x,∴直線OB向下平移m個單位長度后的解析式為:y=x﹣m,∴x﹣m=x2﹣3x,∵拋物線與直線只有一個公共點,∴△=16﹣2m=0,解得:m=8,此時x1=x2=4,y=x2﹣3x=﹣4,∴D點的坐標為(4,﹣4)(3)∵直線OB的解析式為y=x,且A(6,0),∴點A關于直線OB的對稱點A′的坐標是(0,6),根據軸對稱性質和三線合一性質得出∠A′BO=∠ABO,設直線A′B的解析式為y=k2x+6,過點(8,8),∴8k2+6=8,解得:k2=,∴直線A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即點N在直線A′B上,∴設點N(n,),又點N在拋物線y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=8(不合題意,舍去)∴N點的坐標為(﹣,).如圖1,將△NOB沿x軸翻折,得到△N1OB1,則N1(﹣,-),B1(8,﹣8),∴O、D、B1都在直線y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴,∴點P1的坐標為().將△OP1D沿直線y=﹣x翻折,可得另一個滿足條件的點P2(),綜上所述,點P的坐標是()或().【點睛】運用了翻折變換的性質以及待定系數法求一次函數和二次函數解析式以及相似三角形的判定與性質等知識,利用翻折變換的性質得出對應點關系是解題關鍵.20、m的值是12.1.【解析】

根據去年黃桃和蘋果的市場銷售總金額與前年黃桃和蘋果的市場銷售總金額相同,可以列出相應的方程,從而可以求得m的值【詳解】由題意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)解得,m1=0(舍去),m2=12.1,即m的值是12.1.【點睛】本題考查一元二次方程的應用,解答本題的關鍵是明確題意,列出相應的方程,求出m的值,注意解答中是m%,最終求得的是m的值.21、(1)證明見解析;(2);【解析】

(1)根據正方形的性質得到∠GAD=∠EAB,證明△GAD≌△EAB,根據全等三角形的性質證明;(2)根據正方形的性質得到BD⊥AC,AC=BD=5,根據勾股定理計算即可.【詳解】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,,∴△GAD≌△EAB,∴EB=GD;(2)∵四邊形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5,∴∠DOG=90°,OA=OD=BD=,∵AG=2,∴OG=OA+AG=,由勾股定理得,GD==,∴EB=.【點睛】本題考查的是正方形的性質、全等三角形的判定和性質,掌握正方形的對角線相等、垂直且互相平分是解題的關鍵.22、(1)a=5,b=1;(2)6;20%;(3)八年級平均分高于七年級,方差小于七年級.【解析】試題分析:(1)根據題中數據求出a與b的值即可;(2)根據(1)a與b的值,確定出m與n的值即可;(3)從方差,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論