2024屆黑龍江省大慶市肇源市級名校中考四模數學試題含解析_第1頁
2024屆黑龍江省大慶市肇源市級名校中考四模數學試題含解析_第2頁
2024屆黑龍江省大慶市肇源市級名校中考四模數學試題含解析_第3頁
2024屆黑龍江省大慶市肇源市級名校中考四模數學試題含解析_第4頁
2024屆黑龍江省大慶市肇源市級名校中考四模數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江省大慶市肇源市級名校中考四模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,小剛從山腳A出發,沿坡角為的山坡向上走了300米到達B點,則小剛上升了()A.米 B.米 C.米 D.米2.如圖,在中,,分別以點和點為圓心,以大于的長為半徑作弧,兩弧相交于點和點,作直線交于點,交于點,連接.若,則的度數是()A. B. C. D.3.函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣24.如圖,下列各三角形中的三個數之間均具有相同的規律,根據此規律,最后一個三角形中y與n之間的關系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+15.有個零件(正方體中間挖去一個圓柱形孔)如圖放置,它的主視圖是A. B. C. D.6.已知a=(+1)2,估計a的值在()A.3和4之間 B.4和5之間 C.5和6之間 D.6和7之間7.下列各組數中,互為相反數的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|8.下列圖形中,周長不是32m的圖形是()A. B. C. D.9.如圖,平行四邊形ABCD中,點A在反比例函數y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是()A.﹣10 B.﹣5 C.5 D.1010.統計學校排球隊員的年齡,發現有12、13、14、15等四種年齡,統計結果如下表:年齡(歲)12131415人數(個)2468根據表中信息可以判斷該排球隊員年齡的平均數、眾數、中位數分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、15二、填空題(本大題共6個小題,每小題3分,共18分)11.現有一張圓心角為108°,半徑為40cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個底面半徑為10cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的圓心角θ為_____.12.圖,A,B是反比例函數y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.13.如圖,已知正方形邊長為4,以A為圓心,AB為半徑作弧BD,M是BC的中點,過點M作EM⊥BC交弧BD于點E,則弧BE的長為_____.14.我們知道方程組的解是,現給出另一個方程組,它的解是____.15.如圖,在每個小正方形的邊長為1的網格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.(1)OM的長等于_______;(2)當點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網格和無刻度的直尺,在給定的網格中畫出點P的位置,并簡要說明你是怎么畫的.16.若am=5,an=6,則am+n=________.三、解答題(共8題,共72分)17.(8分)先化簡,然后從-2≤x≤2的范圍內選取一個合適的整數作為x的值代入求值.18.(8分)如圖,一次函數y=kx+b與反比例函數y=的圖象相較于A(2,3),B(﹣3,n)兩點.求一次函數與反比例函數的解析式;根據所給條件,請直接寫出不等式kx+b>的解集;過點B作BC⊥x軸,垂足為C,求S△ABC.19.(8分)太原市志愿者服務平臺旨在弘揚“奉獻、關愛、互助、進步”的志愿服務精神,培育志思服務文化,推動太原市志愿服務的制度化、常態化,弘揚社會正能量,截止到2018年5月9日16:00,在該平臺注冊的志愿組織數達2678個,志愿者人數達247951人,組織志愿活動19748次,累計志愿服務時間3889241小時,學校為了解共青團員志愿服務情況,調查小組根據平臺數據進行了抽樣問卷調查,過程如下:(1)收集、整理數據:從九年級隨機抽取40名共青團員,將其志愿服務時間按如下方式分組(A:0~5小時;B:5~10小時;C:10~15小時;D:15~20小時;E:20~25小時;F:25~30小時,注:每組含最小值,不含最大值)得到這40名志愿者服務時間如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并將上述數據整理在如下的頻數分布表中,請你補充其中的數據:志愿服務時間ABCDEF頻數34107(2)描述數據:根據上面的頻數分布表,小明繪制了如下的頻數直方圖(圖1),請將空缺的部分補充完整;(3)分析數據:①調查小組從八年級共青團員中隨機抽取40名,將他們的志愿服務時間按(1)題的方式整理后,畫出如圖2的扇形統計圖.請你對比八九年級的統計圖,寫出一個結論;②校團委計劃組織志愿服務時間不足10小時的團員參加義務勞動,根據上述信息估計九年級200名團員中參加此次義務勞動的人數約為人;(4)問題解決:校團委計劃組織中考志愿服務活動,共甲、乙、丙三個服務點,八年級的小穎和小文任意選擇一個服務點參與志服務,求兩人恰好選在同一個服務點的概率.20.(8分)如圖,已知△ABC,請用尺規作圖,使得圓心到△ABC各邊距離相等(保留作圖痕跡,不寫作法).21.(8分)在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+3a﹣2(a≠0)與x軸交于A,B兩(點A在點B左側).(1)當拋物線過原點時,求實數a的值;(2)①求拋物線的對稱軸;②求拋物線的頂點的縱坐標(用含a的代數式表示);(3)當AB≤4時,求實數a的取值范圍.22.(10分)如圖,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一點P,使PA+PB=BC;(尺規作圖,不寫作法,保留作圖痕跡)求BP的長.23.(12分)手機下載一個APP、繳納一定數額的押金,就能以每小時0.5到1元的價格解鎖一輛自行車任意騎行,共享單車為解決市民出行的“最后一公里”難題幫了大忙,人們在享受科技進步、共享經濟帶來的便利的同時,隨意停放、加裝私鎖、推車下河、大卸八塊等毀壞共享單車的行為也層出不窮?某共享單車公司一月投入部分自行車進入市場,一月底發現損壞率不低于10%,二月初又投入1200輛進入市場,使可使用的自行車達到7500輛.一月份該公司投入市場的自行車至少有多少輛?二月份的損壞率為20%,進入三月份,該公司新投入市場的自行車比二月份增長4a%,由于媒體的關注,毀壞共享單車的行為點燃了國民素質的大討論,三月份的損壞率下降為a%,三月底可使用的自行車達到7752輛,求a的值.24.在平面直角坐標系xOy中,將拋物線(m≠0)向右平移個單位長度后得到拋物線G2,點A是拋物線G2的頂點.(1)直接寫出點A的坐標;(2)過點(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點.①當∠BAC=90°時.求拋物線G2的表達式;②若60°<∠BAC<120°,直接寫出m的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

利用銳角三角函數關系即可求出小剛上升了的高度.【詳解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB?sinα=300sinα米.故選A.【點睛】此題主要考查了解直角三角形的應用,根據題意構造直角三角形,正確選擇銳角三角函數得出AB,BO的關系是解題關鍵.2、B【解析】

根據題意可知DE是AC的垂直平分線,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性質即可求出∠CDA的度數.【詳解】解:∵DE是AC的垂直平分線,

∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,

故選B.【點睛】本題考查作圖-基本作圖、線段的垂直平分線的性質、等腰三角形的性質,三角形有關角的性質等知識,解題的關鍵是熟練運用這些知識解決問題,屬于中考常考題型.3、C【解析】

根據函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數與x軸有一個交點,當m≠0時,函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關鍵是明確題意,利用分類討論的數學思想解答.4、B【解析】

∵觀察可知:左邊三角形的數字規律為:1,2,…,n,右邊三角形的數字規律為:2,22,…,2下邊三角形的數字規律為:1+2,2+22,…,∴最后一個三角形中y與n之間的關系式是y=2n+n.故選B.【點睛】考點:規律型:數字的變化類.5、C【解析】

根據主視圖的定義判斷即可.【詳解】解:從正面看一個正方形被分成三部分,兩條分別是虛線,故正確.故選:.【點睛】此題考查的是主視圖的判斷,掌握主視圖的定義是解決此題的關鍵.6、D【解析】

首先計算平方,然后再確定的范圍,進而可得4+的范圍.【詳解】解:a=×(7+1+2)=4+,∵2<<3,∴6<4+<7,∴a的值在6和7之間,故選D.【點睛】此題主要考查了估算無理數的大小,用有理數逼近無理數,求無理數的近似值.7、A【解析】

根據相反數的定義,對每個選項進行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數,正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數,故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點睛】本題考查了相反數的定義,解題的關鍵是掌握相反數的定義.8、B【解析】

根據所給圖形,分別計算出它們的周長,然后判斷各選項即可.【詳解】A.L=(6+10)×2=32,其周長為32.B.該平行四邊形的一邊長為10,另一邊長大于6,故其周長大于32.C.L=(6+10)×2=32,其周長為32.D.L=(6+10)×2=32,其周長為32.采用排除法即可選出B故選B.【點睛】此題考查多邊形的周長,解題在于掌握計算公式.9、A【解析】

作AE⊥BC于E,由四邊形ABCD為平行四邊形得AD∥x軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據反比例函數k的幾何意義得到S矩形ADOE=|?k|,利用反比例函數圖象得到.【詳解】作AE⊥BC于E,如圖,∵四邊形ABCD為平行四邊形,∴AD∥x軸,∴四邊形ADOE為矩形,∴S平行四邊形ABCD=S矩形ADOE,而S矩形ADOE=|?k|,∴|?k|=1,∵k<0,∴k=?1.故選A.【點睛】本題考查了反比例函數y=(k≠0)系數k的幾何意義:從反比例函數y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.10、B【解析】

根據加權平均數、眾數、中位數的計算方法求解即可.【詳解】,15出現了8次,出現的次數最多,故眾數是15,從小到大排列后,排在10、11兩個位置的數是14,14,故中位數是14.故選B.【點睛】本題考查了平均數、眾數與中位數的意義.數據x1、x2、……、xn的加權平均數:(其中w1、w2、……、wn分別為x1、x2、……、xn的權數).一組數據中出現次數最多的數據叫做眾數.中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(或最中間兩個數的平均數),叫做這組數據的中位數.二、填空題(本大題共6個小題,每小題3分,共18分)11、18°【解析】試題分析:根據圓錐的展開圖的圓心角計算法則可得:扇形的圓心角=1040考點:圓錐的展開圖12、1.【解析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據△AOD的面積為3,列出關系式求得k的值.解:設點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數系數k的幾何意義,以及運用待定系數法求反比例函數解析式,根據△AOD的面積為1列出關系式是解題的關鍵.13、【解析】

延長ME交AD于F,由M是BC的中點,MF⊥AD,得到F點為AD的中點,即AF=AD,則∠AEF=30°,得到∠BAE=30°,再利用弧長公式計算出弧BE的長.【詳解】延長ME交AD于F,如圖,∵M是BC的中點,MF⊥AD,∴F點為AD的中點,即AF=AD.又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的長==.故答案為.【點睛】本題考查了弧長公式:l=.也考查了在直角三角形中,一直角邊是斜邊的一半,這條直角邊所對的角為30度.14、【解析】

觀察兩個方程組的形式與聯系,可得第二個方程組中,解之即可.【詳解】解:由題意得,解得.故答案為:.【點睛】本題考查了二元一次方程組的解,用整體代入法解決這種問題比較方便.15、(1)4;(2)見解析;【解析】

解:(1)由勾股定理可得OM的長度(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求。【詳解】(1)OM==4;故答案為4.(2)以點O為原點建立直角坐標系,則A(1,0),B(4,0),設P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴當a=時,PA2+PB2取得最小值,綜上,需作出點P滿足線段OP的長=;取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求.【點睛】(1)根據勾股定理即可得到結論;(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR即可得到結果.16、1.【解析】

根據同底數冪乘法性質am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點睛】本題考查了同底數冪乘法計算,屬于簡單題,熟悉法則是解題關鍵.三、解答題(共8題,共72分)17、,當x=0時,原式=(或:當x=-1時,原式=).【解析】

先根據分式混合運算的法則把原式進行化簡,再選取合適的x的值代入進行計算即可.【詳解】解:原式=×=.x滿足﹣1≤x≤1且為整數,若使分式有意義,x只能取0,﹣1.當x=0時,原式=﹣(或:當x=﹣1時,原式=).【點睛】本題考查分式的化簡求值,化簡的過程中要注意運算順序和分式的化簡.化簡的最后結果分子、分母要進行約分,注意運算的結果要化成最簡分式或整式.18、(1)反比例函數的解析式為:y=,一次函數的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】

(1)根據點A位于反比例函數的圖象上,利用待定系數法求出反比例函數解析式,將點B坐標代入反比例函數解析式,求出n的值,進而求出一次函數解析式(2)根據點A和點B的坐標及圖象特點,即可求出反比例函數值大于一次函數值時x的取值范圍(3)由點A和點B的坐標求得三角形以BC為底的高是10,從而求得三角形ABC的面積【詳解】解:(1)∵點A(2,3)在y=的圖象上,∴m=6,∴反比例函數的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點在y=kx+b上,∴,解得:,∴一次函數的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1.19、(1)7,9;(2)見解析;(3)①在15~20小時的人數最多;②35;(4).【解析】

(1)觀察統計圖即可得解;(2)根據題意作圖;(3)①根據兩個統計圖解答即可;②根據圖1先算出不足10小時的概率再乘以200人即可;(4)根據題意畫出樹狀圖即可解答.【詳解】解:(1)C的頻數為7,E的頻數為9;故答案為7,9;(2)補全頻數直方圖為:(3)①八九年級共青團員志愿服務時間在15~20小時的人數最多;②200×=35,所以估計九年級200名團員中參加此次義務勞動的人數約為35人;故答案為35;(4)畫樹狀圖為:共有9種等可能的結果數,其中兩人恰好選在同一個服務點的結果數為3,所以兩人恰好選在同一個服務點的概率==.【點睛】本題考查了條形統計圖與扇形統計圖與樹狀圖法,解題的關鍵是熟練的掌握條形統計圖與扇形統計圖與樹狀圖法.20、見解析【解析】

分別作∠ABC和∠ACB的平分線,它們的交點O滿足條件.【詳解】解:如圖,點O為所作.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).21、(1)a=;(2)①x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)a的范圍為a<﹣2或a≥.【解析】

(1)把原點坐標代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把拋物線解析式配成頂點式,即可得到拋物線的對稱軸和拋物線的頂點的縱坐標;(3)設A(m,1),B(n,1),利用拋物線與x軸的交點問題,則m、n為方程ax2﹣4ax+3a﹣2=1的兩根,利用判別式的意義解得a>1或a<﹣2,再利用根與系數的關系得到m+n=4,mn=,然后根據完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4?≤16,接著解關于a的不等式,最后確定a的范圍.【詳解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2得3a﹣2=1,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,拋物線的對稱軸為直線x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)設A(m,1),B(n,1),∵m、n為方程ax2﹣4ax+3a﹣2=1的兩根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4?≤16,即≥1,解得a≥或a<1.∴a的范圍為a<﹣2或a≥.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠1)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質.22、(1)見解析;(2)2.【解析】

(1)作AC的垂直平分線與BC相交于P;(2)根據勾股定理求解.【詳解】(1)如圖所示,點P即為所求.(2)設BP=x,則CP=1﹣x,由(1)中作圖知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【點睛】考核知識點:勾股定理和線段垂直平分線.23、(1)7000輛;(2)a的值是1.【解析】

(1)設一月份該公司投入市場的自行車x輛,根據損壞率不低于10%,可得不等量關系:一月初投入的自行車-一月底可用的自行車≥一月損壞的自行車列不等式求解;(2)根據三月底可使用的自行車達到7752輛,可得等量關系為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論