




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年浙江省杭州市拱墅區中考數學模擬試卷
一、選擇題(本題有10小題,每小題3分,共30分)
1.(3分)比數軸上的點A表示的數大2的數是()
A
―?-------1--------1---------1---------1->
-2-1012
A.2B.-2C.1D.0
2.(3分)如圖是由5個相同的小立方塊搭成的幾何體,它的俯視圖是()
主視方向
3.(3分)由遂昌籍科學家毛承元為總設計師設計的長征十二號運載火箭起飛質量約為430000千克,其中
數430000用科學記數法表示為()
A.0.43X106B.4.3X105C.43X103456D.4.3X106
4.(3分)下列計算正確的是()
347824
A./+/=『B.a?(7=(7C.(『)2=°9口.a4-a=a
5.(3分)某校九年級有13個班進行大合唱比賽,預賽成績各不相同,要取前6名參加決賽,小林已經知
道了自己班的成績,她想知道自己班能否進入決賽,還需要知道這13個班合唱成績的()
A.中位數B.眾數C.平均數D.方差
6.(3分)如圖,在平面直角坐標系中,△ABC與是位似圖形,位似中心為點。,若點C(4,1)
的對應點尸(12,3),則AABC的面積與△DEF的面積之比為()
Ox
A.1:3B.3:1C.1:9D.9:1
7.(3分)不等式組以工〉的解集在數軸上表示為,)
C.0123D.0123
8.(3分)我國漢代數學家趙爽為了證明勾股定理,創制了一幅“弦圖”,后人稱其為“趙爽弦圖如圖,由
弦圖變化得到,它是由八個全等的直角三角形拼接而成.記圖中正方形ABC。,正方形EFGH,正方形
MNKT的面積分別為Si,S2,S3,若SI+S2+S3=21,則S2的值是()
C.7.5D.7
9
9.(3分)已知A(m-2,yi),B(m,>2),C(m+1,")三點反比例函數y=-亍的圖象上,則下列判
斷正確的是()
A.當m<-1時,0<y3<y2Vyi
B.當-IV小<0時,y3VoVyi〈y2
C.當0VmV2時,ys<y2<0<yi
D.當加>2時,y3<”<丁1<0
10.(3分)如圖,在口ABC。中,AC,5。相交于點O,AB=2,BC=2?,記AC的長為x,5。的長為y,
C.x2+y2=32D./-X2=32
二、填空題(本題有6小題,每小題3分,共18分)
11.(3分)因式分解:3a2-9a=.
12.(3分)方程組5的解是______________________.
(4%+3y=—10
13.(3分)如圖,△ABC中,AC=AB,以AB為直徑作O。,交BC于D,交AC于E.若N8A£)=25°,
則/£DC=°.
14.(3分)某商場抽獎盒中放置了8張“滿100減20”優惠券和5張“免單券”,顧客隨機抽取一張,則
抽中“免單券”的概率為.
15.(3分)如圖,在中,NC=90°,點。是A3中點,點E在AC上.連結。E,且DE平分
△ABC的周長.若DE=2,則3c的長為.
16.(3分)如圖,在菱形ABC。中,ZBAD^60°,將菱形ABCD繞點A逆時針方向旋轉,對應得到菱
形AEFG,點E在AC上,EF與CD交于點P,且。尸=1,則菱形的邊長是.
三、解答題(本題有8小題,第1721題每題8分,第22、23題每題10分,第24題12分,共72分,各
小題都必須寫出解答過程)
17.(8分)計算:(3-2—〃+(_2)3.
?1
18.(8分)小華想復習分式方程,由于印刷問題,有一個數“?”看不清楚:——+3=——.
x-22-X
(1)她把這個數“?”猜成5,請你幫小華解這個分式方程;
(2)小華的媽媽說:“我看到標準答案是:方程的增根是x=2,原分式方程無解”,請你求出原分式方
程中“?”代表的數是多少?
19.(8分)如圖,在Rt/VIBC中,NC=90。,A。平分NBAC,Z)E_LAB于點E,BD=5,cosB=|.
(1)求C£)的長.
(2)求tan/AOE的值.
20.(8分)某校為了解學生的數學素養,隨機抽取100名學生進行模擬測試(每位學員答5道數學題,其
中答對4道及以上為優秀),經過兩周訓練,對這些學生進行第二次模擬測試,將這兩次模擬成績進行
整理、分析,并制作成如下統計表.
第一次模擬測試情況第二次模擬測試情況
(2)若該校有1200名學生,估計第一次模擬測試達到“優秀”的學生人數.
(3)你認為學生的兩周訓練是否有效?請用相關統計量說明理由.
21.(8分)如圖,已知在△ABC中,NA=90°
(1)請用圓規和直尺作出OP,使圓心尸在AC邊上,且。尸與AB,8C兩邊都相切;(保留作圖痕跡,
不寫作法和證明)
(2)若A8=3,BC=6,OP切于點Q,求劣弧崩的長.
22.(10分)小聰家購買了一輛新能源汽車,該汽車的基本配置為:電池容量為60成/?,支持快速充電功
能,快速充電功率為180%v.圖①為汽車儀表盤的一部分,有關充電小常識如圖②所示.
新能源汽車小常識:
1.新能源汽車充電有個簡單的公式:
充電量(kwh)=充電功率(kw)x充電時間(h)
2.電動汽車電池剩余20%電量時,提示充電狀態,
此時電量燈顯示為黃色
圖①圖②
八y(km)
400-,……-
300——iT——+…;
200…………卜?十?;
loo——H--:——
*ol~20406080lOOxf%)
圖③
已知該新能源汽車在滿電量狀態下行駛過程中儀表盤行駛里程y(千米)與顯示電量x(%)的部分數
據如下表:(不考慮續航縮水問題)
汽車行駛過程
已行駛里程y(千米)0200300350
顯示電量%(%)100604030
(1)在直角坐標系中,通過描點判斷y與x之間的函數關系,并求出該函數表達式.
(2)請問該汽車在滿電狀態行駛多少公里時,電量燈開始變成黃色?
(3)已知小聰爸爸駕駛該新能源汽車在滿電量的狀態下出發,前往600千米處的目的地,行駛240千
米后,在途中的服務區充電,一次性充電若干時長后繼續行駛,到達目的地時儀表盤顯示電量為10%,
求該汽車在服務區充電的時長.
23.(10分)已知二次函數y=f-2bx+5(6為常數).
(1)當二次函數y=/-26x+5的圖象經過點A(1,0)時,求二次函數的表達式;
(2)當xN-1時,y的最小值為1,求6的值;
(3)當6=1時,把拋物線y=x2-2bx+5向下平移n(w>0)個單位長度得到新拋物線過點B(優,0),
且-1<2,請求出n的取值范圍.
24.(12分)如圖1,在。。中,與C£>是點。異側的兩條弦,AB>CD,且連結A。,與
BC交于點E.
(1)求證:AE=BE.
(2)如圖2,連結0E并延長,與5。的延長線交于點況連結04.求證:ZF=ZOAE.
0E1AE
(3)在(2)的條件下,若==二,求岸的值.
EF2BF
2025年浙江省杭州市拱墅區中考數學模擬試卷
參考答案與試題解析
一、選擇題(本題有10小題,每小題3分,共30分)
1.(3分)比數軸上的點A表示的數大2的數是()
A
―?----X---1-----1----1_>
-2-1012
A.2B.-2C.1D.0
【解答】解:由數軸得點A表示的數是-1,
所以比點A表示的數大2的數是-1+2=1,
故選:C.
2.(3分)如圖是由5個相同的小立方塊搭成的幾何體,它的俯視圖是()
【解答】解:從上邊看,底層左邊是一個小正方形,上層是三個小正方形,左齊.
故選:A.
3.(3分)由遂昌籍科學家毛承元為總設計師設計的長征十二號運載火箭起飛質量約為430000千克,其中
數430000用科學記數法表示為()
A.0.43X106B.4.3X105C.43X104D.4.3X106
【解答】解:430000=4.3X105.
故選:B.
4.(3分)下列計算正確的是()
2i5l29824
A.a+a=aB.a''a'=aC.(/)=flD.tz4-a=a
【解答】解:A.不能合并同類項,故本選項不符合題意;
B.原式=/,故本選項符合題意;
C.原式=不,故本選項不符合題意;
D.原式=/,故本選項不符合題意;
故選:B.
5.(3分)某校九年級有13個班進行大合唱比賽,預賽成績各不相同,要取前6名參加決賽,小林已經知
道了自己班的成績,她想知道自己班能否進入決賽,還需要知道這13個班合唱成績的()
A.中位數B.眾數C.平均數D.方差
【解答】解:共有13個班級學生參加比賽,取前6名,所以小林班級需要知道自己的成績是否進入決
賽.我們把所有班級的成績按大小順序排列,第7名班級的成績是這組數據的中位數,
所以小林知道這組數據的中位數,才能知道自己是否進入決賽.
故選:A.
6.(3分)如圖,在平面直角坐標系中,△ABC與是位似圖形,位似中心為點。,若點C(4,1)
的對應點尸(12,3),則△ABC的面積與的面積之比為()
【解答】解::△ABC與△。跖是位似圖形,位似中心為點。,點C(4,1)的對應點尸(12,3),
:.△ABCMDEF,且相似比為1:3,
.?.△ABC的面積與△QEF的面積之比1:9,
故選:C.
7.(3分)不等式組卜一2>°,的解集在數軸上表示為()
-6>0
A.0123B.0123
【解答】解:
解不等式x-2>0得:x>2,
解不等式2x-6》0得:x》3,
在數軸上表示如圖:
---'------16>
012-----3,
故選:B.
8.(3分)我國漢代數學家趙爽為了證明勾股定理,創制了一幅“弦圖”,后人稱其為“趙爽弦圖如圖,由
弦圖變化得到,它是由八個全等的直角三角形拼接而成.記圖中正方形A8CQ,正方形EFGH,正方形
MNKT的面積分別為Si,S2,S3,若51+52+53=21,則S2的值是()
A.9.5B.9C.7.5D.7
【解答】解:設全等的直角三角形的兩條直角邊為。、〃且
由題意可知:
Si=(〃+b)2,S2=a2+b2,S3=(a-b)2,
因為SI+S2+S3=21,即
(〃+。)2+一+廬+-b)2=21
3(6Z2+Z?2)=21,
所以3s2=21,
S2的值是7.
故選:D.
7
9.(3分)已知A(m-2,yi),B(m,y2),C(m+1,")三點反比例函數y=―亍的圖象上,則下列判
斷正確的是()
A.當m<-1時,0〈丁3〈丁2〈y1
B.當-IV機V0時,y?><0<yi<y2
C.當0<根<2時,y3<y2<0<yi
D.當機>2時,y3<y2<yi<0
【解答】解:由題知,
當機<-1時,A,B,C三點都在第二象限,
因為m-2<m<m+l,
所以0<yi<y2<y3.
故A選項不符合題意.
當-1<根<0時,點A,2在第二象限,點C在第四象限,
所以*<0<戶<”.
故B選項符合題意.
當0<小<2時,點A在第二象限,點8和點C在第四象限,
所以y2<j3<0<ji.
故C選項不符合題意.
當機>2時,點A,B,C都在第四象限,
所以yi<y2<*<0.
故。選項不符合題意.
故選:B.
10.(3分)如圖,在口ABC。中,AC,8。相交于點O,AB=2,8C=2遍,記AC的長為x,8。的長為y,
則下列各式正確的是()
【解答】解:作于點M,交BC的延長線于點N,則/ABM=NN=90°,
:四邊形ABC。是平行四邊形,4B=2,BC=2V3,AC=x,BD=y,
C.AB//DC,AB=DC,
:.ZABM^ZDCN,
在△ABM和△OCN中,
-^AMB=NN
AABM=乙DCN,
AB=DC
:.AABM^/\DCN(A4S),
:.AM=DN,BM=CN,
:.BD1=DN1+BN1=AM1+(BC+CN)2=AM2+(BC+BM)2=AN^+B^+IBC-BM+BM2,
':AC2=AM2+CM2=AM2+(BC-BM)2=AM2+BC2-IBC-BM+BM1,
C.AC^+BD1=2AM2+2BM2+2BC2=2AB2+2BC2=2X22+2X(2V3)2=32,
.,.x2+y2=32,
故A不符合題意,8不符合題意,C符合題意;
假設/-X2=32成立,貝U/+/=y-
求得尤=0,不符合題意,
.'.j2-X2=32不成立,
故。不符合題意,
二、填空題(本題有6小題,每小題3分,共18分)
11.(3分)因式分解:3f-9a=3a(a-3).
【解答】解:3/-9。=3a(a-3),
故答案為:3a(a-3).
12.(3分)方程組修;第=1]0的解是—二三「?
【解答】解:產一?
(4%+3y=-10②
①義3+②得:10x=5,
解得:%=4,
11
把x=2代入①得:2x2~y=5j
解得:尸-4,
所以方程組的解是卜=2.
(y=-4
故答案為:產=2
ly=—4
13.(3分)如圖,△A3C中,AC=AB,以AS為直徑作。0,交8C于。,交AC于£若NBAD=25
則NE0C=50
【解答】解:TAB是。0的直徑,
ZADB=90°,
VAB=AC,ZBAD=25°,
:.ZBAC=2ZBAD=5Q°,
,/四邊形ABDE是OO的內接四邊形,
:.ZBAE+ZBDE=1SO°,
VZEDC+ZBDE=180°,
:.ZEDC=ZBAE=50°,
故答案為:50.
14.(3分)某商場抽獎盒中放置了8張“滿100減20”優惠券和5張“免單券”,顧客隨機抽取一張,則
抽中“免單券”的概率為—.
—13―
55
【解答】解;抽中“免單券”的概率為:—.
8+513
5
故選:
15.(3分)如圖,在中,ZC=90°,點。是A5中點,點E在AC上.連結£>瓦且OE平分
△ABC的周長.若DE=2,則BC的長為2—.
【解答】解:延長AC至R使得CF=BC,
VZACB=90",
:.ZBCF^90°,
在RtABCF中,BF=s/BC2+CF2=立BC,
?。是AB邊中點,DE平分△ABC的周長,
:.BC+CE^AE,
;.EF=EA,即E是AP的中點,
為AB的中點,
;.£)£是△ABF的中位線,
1
:.DE=*,即BF=2DE=4,
:.BF=近BC=4,
:.BC=2y/2.
故答案為:2&.
16.(3分)如圖,在菱形ABC。中,ZBAD=6Q°,將菱形A8CO繞點A逆時針方向旋轉,對應得到菱
形AEFG,點E在AC上,EF與CD交于點、P,且。尸=1,則菱形的邊長是1+百.
【解答】解:連接2。交AC于。,如圖所示:
:四邊形ABC。是菱形,
1
:.CD^ABf/BCD=/BAD=60°,ZACD=ZBAC=^ZBAD=30°,OA=OC,ACLBD,
???四邊形AE/G是菱形,
J.EF//AG,
:.ZCEP=ZEAG=60°,
:.ZCEP+ZACD=90°,
:.ZCPE=90°,
1
:.PE=^CE,
由旋轉的性質得:AE=ABfZEAG=ZBAD=60°,
設尸E=x,則CE=2x,PC=V3x,
.,.£)C=H-\/3x,
:.0C=*(1+V3x),
VAC=CE+AE=2x+1+V3x,
VAC=20C,
2x+1+V3x=V3(1+V3x),
解得x=l,
.\DC=1+V3.
???菱形的邊長是1+g;
方法2:連接OF,
由題可知旋轉角度為N8AC=30°,
:.AF=AC,AE=AB=AD,
:.DF=EC,
VZAFE=ZACD,NFPD=/CPE,
AAFDP^ACEP(A4S),
;?DP=PE=1,
.\DC=1+V3.
???菱形的邊長是i+V5;
故答案為:l+百.
三、解答題(本題有8小題,第17〃題每題8分,第22、23題每題10分,第24題12分,共72分,各
小題都必須寫出解答過程)
17.(8分)計算:(》-2一〃+(_2)3.
【解答】解:原式=9-2-8
18.(8分)小華想復習分式方程,由于印刷問題,有一個數“?”看不清楚:——+3=—.
x-22-X
(1)她把這個數“?”猜成5,請你幫小華解這個分式方程;
(2)小華的媽媽說:“我看到標準答案是:方程的增根是尤=2,原分式方程無解”,請你求出原分式方
程中“?”代表的數是多少?
【解答】解:(1)方程兩邊同時乘以(x-2)得5+3(x-2)=-1
解得x=0
經檢驗,x=0是原分式方程的解.
(2)設?為m,
方程兩邊同時乘以(x-2)得777+3(尤-2)=-1
由于x=2是原分式方程的增根,
所以把尤=2代入上面的等式得m+3(2-2)=-1,m=-1
所以,原分式方程中“?”代表的數是-1.
19.(8分)如圖,在Rt"8C中,ZC=90°,AD平分/BAC,于點E,BD=5,cosB=|.
(1)求CD的長.
(2)求tan/AOE的值.
AEB
【解答】解:(1)???DE,A8,
:.ZDEB=90°,
在Rt△。防中,BD=5,cosB=I,
3
BE=DB?cosB=5x5=3,
:.DE=-JOB2-BE2=V52-32=4,
YA。平分N5AC,DELAB,DC±ACf
:.DE=DC=4;
(2).:BD=5,DC=4,
:.BC=CD+BD=9,
在RtAABC中,cosB=百,
?a*BC_9
"2一而^一3T5,
5
?:BE=3,
:.AE=AB-BE=15-3=12,
在RtAADE中,tanZADE=箓=竽=3.
20.(8分)某校為了解學生的數學素養,隨機抽取100名學生進行模擬測試(每位學員答5道數學題,其
中答對4道及以上為優秀),經過兩周訓練,對這些學生進行第二次模擬測試,將這兩次模擬成績進行
整理、分析,并制作成如下統計表.
第一次模擬測試情況第二次模擬測試情況
(2)若該校有1200名學生,估計第一次模擬測試達到“優秀”的學生人數.
(3)你認為學生的兩周訓練是否有效?請用相關統計量說明理由.
【解答】解:(1)在扇形統計圖中,
可知“答對4道”在扇形統計圖中的占比=100%-10%-10%-15%-40%=25%,
“答對4道”在扇形統計圖中的圓心角=360°義25%=90°,
故答案為:90°;
(2)根據條形圖可知第一次模擬測試達到“優秀”的學生人數占比="qnTHgqxl00%=15%,
乙UI。UI。JIJLUIJ
若該校有1200名學生,則預估第一次模擬測試達到“優秀”的學生人數=1200X15%=180(人),
故答案為:180人;
(3)我認為兩周訓練有效,
因為“優秀”的學生人數占比從15%提升至35%,
“優秀”的學生人數從15人提升至35人,
所以兩周訓練有效.
21.(8分)如圖,已知在△ABC中,ZA=90°
(1)請用圓規和直尺作出OP,使圓心尸在AC邊上,且。尸與AB,BC兩邊都相切;(保留作圖痕跡,
不寫作法和證明)
(2)若AB=3,BC=6,O尸切于點。,求劣弧崩的長.
【解答】解:(1)如圖,O尸即為所求;
(2)VZBAC=90°,AB=3,BC=6,
:.BC=2AB,
.,.NC=30°,
/.ZABC=60°,
,/OP切BC于點D,
:.ZPDB=ZBAP=90°,
/.ZAP£)=120°,
由(1)作圖可知:2尸平分NABC,
AZABP=30°,
.?.AP=AB?tan30°=3x字=百,
劣弧通的長="黑產=空.
loUD
22.(10分)小聰家購買了一輛新能源汽車,該汽車的基本配置為:電池容量為60hWz,支持快速充電功
能,快速充電功率為180%v.圖①為汽車儀表盤的一部分,有關充電小常識如圖②所示.
新能源汽車小常識:
1.新能源汽車充電有個簡單的公式:
充電量(kwh)=充電功率(kw)x充電時間(h)
2.電動汽車電池剩余20%電量時,提示充電狀態,
此時電量燈顯示為黃色
圖①圖②
八y(km)
400.?…廠…廠…:……-
300……:-—:……
200……j-----:……;一?十?二
loo——H--:——
*ol~20406080100x(%)
圖③
已知該新能源汽車在滿電量狀態下行駛過程中儀表盤行駛里程J(千米)與顯示電量X(%)的部分數
據如下表:(不考慮續航縮水問題)
汽車行駛過程
已行駛里程y(千米)0200300350
顯示電量工(%)100604030
(1)在直角坐標系中,通過描點判斷y與X之間的函數關系,并求出該函數表達式.
(2)請問該汽車在滿電狀態行駛多少公里時,電量燈開始變成黃色?
(3)已知小聰爸爸駕駛該新能源汽車在滿電量的狀態下出發,前往600千米處的目的地,行駛240千
米后,在途中的服務區充電,一次性充電若干時長后繼續行駛,到達目的地時儀表盤顯示電量為10%,
求該汽車在服務區充電的時長.
【解答】解:在坐標系中描點作圖如下:判斷該函數為一次函數,設函數解析式為
將點(40,300),(60,200)代入解析式得:
(40k+b—300Anzaffc=-5
l60k+b=200)斛3lb=500'
一次函數解析式為:y=-5x+500.
(2)當x=20時,-5X20+500=400,
答:該汽車在滿電狀態行駛400公里時,電量燈開始變成黃色.
(3)由題意可得在滿電狀態下行駛240h",
行駛240kw里程表顯示:240=-5x+500,解得x=52,
行駛240為“耗電量為100-52=48,
剩余路程(600-240)=36Qkm,
在滿電狀態下里程表顯示:360=-5x+500,解得x=28,
據此行駛360km耗電量為100-28=72,
設增加的電量為w,
10=52+w-72,解得w=30.
1
根據題意,電池容量為60Rv〃,支持快速充電功能,快速充電功率為180hv,即[小時充電100%,
1
30%的電量需要充電時間為:-x30100=0.1小時,即充電時間為6分鐘.
答:到達目的地時儀表盤顯示電量為10%,該汽車在服務區充電6分鐘.
23.(10分)已知二次函數-2/zx+5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 眼線畫法 線條處理更流暢
- 2025年高中數學湘教版新教材必修B版第二冊課時作業(三十七)
- 彩妝經驗 彩妝高手的經驗分享幫你提升化妝技術
- 和合谷 享受美食帶來的幸福感
- 2025至2030中國支線航空行業市場發展分析及發展前景與投資報告
- 2025至2030中國工業熱熔分配設備行業產業運行態勢及投資規劃深度研究報告
- 2025至2030中國小貓貓糧行業產業運行態勢及投資規劃深度研究報告
- 德克士的餐廳設計理念
- 2025至2030中國外墻磚行業產業運行態勢及投資規劃深度研究報告
- 采用BIM技術提升項目管理效率
- 銀行催收實習心得
- 2024年高考政治總復習必修三《政治與法治》 綜合測試題及答案
- 2023水電工程費用構成及概(估)算費用標準
- Unit2 Bridging Cultures Discovering useful structures 課件英語人教版(2019)選擇性必修第二冊
- 天然氣管道安裝施工組織方案
- 《能源培訓講義》課件
- GB/T 12996-2024電動輪椅車
- 機械制圖教學工作頁 第2版 課件 項目7測繪一級直齒圓柱減速器主動齒輪軸
- 2022年國家公務員考試《行測》真題(行政執法)及答案解析
- 2023-2024學年七年級英語下學期期末考試試卷(天津卷)
- 《環境保護產品技術要求 工業廢氣吸附凈化裝置》HJT 386-2007
評論
0/150
提交評論