高一數學知識點重點總結歸納(32篇)_第1頁
高一數學知識點重點總結歸納(32篇)_第2頁
高一數學知識點重點總結歸納(32篇)_第3頁
高一數學知識點重點總結歸納(32篇)_第4頁
高一數學知識點重點總結歸納(32篇)_第5頁
已閱讀5頁,還剩52頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

高一數學知識點重點總結歸納(精品32篇)高一數學知識點重點總結歸納篇1函數及其表示知識點詳解文檔包含函數的概念、映射、函數關系的判斷原則、函數區間、函數的三要素、函數的定義域、求具體或抽象數值的函數值、求函數值域、函數的表示方法等1.函數與映射的區別:2.求函數定義域常見的用解析式表示的函數f(x)的定義域可以歸納如下:①當f(x)為整式時,函數的定義域為R。②當f(x)為分式時,函數的定義域為使分式分母不為零的實數集合。③當f(x)為偶次根式時,函數的定義域是使被開方數不小于0的實數集合。④當f(x)為對數式時,函數的定義域是使真數為正、底數為正且不為1的實數集合。⑤如果f(x)是由幾個部分的數學式子構成的,那么函數定義域是使各部分式子都有意義的實數集合,即求各部分有意義的實數集合的交集。⑥復合函數的定義域是復合的各基本的函數定義域的交集。⑦對于由實際問題的背景確定的函數,其定義域除上述外,還要受實際問題的制約。3.求函數值域(1)、觀察法:通過對函數定義域、性質的觀察,結合函數的解析式,求得函數的值域;(2)、配方法;如果一個函數是二次函數或者經過換元可以寫成二次函數的形式,那么將這個函數的右邊配方,通過自變量的范圍可以求出該函數的值域;(3)、判別式法:(4)、數形結合法;通過觀察函數的圖象,運用數形結合的方法得到函數的值域;(5)、換元法;以新變量代替函數式中的某些量,使函數轉化為以新變量為自變量的函數形式,進而求出值域;(6)、利用函數的單調性;如果函數在給出的定義域區間上是嚴格單調的,那么就可以利用端點的函數值來求出值域;(7)、利用基本不等式:對于一些特殊的分式函數、高于二次的函數可以利用重要不等式求出函數的值域;(8)、最值法:對于閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域;(9)、反函數法:如果函數在其定義域內存在反函數,那么求函數的值域可以轉化為求反函數的定義域。高一數學知識點重點總結歸納篇2高一數學函數知識點歸納1、函數:設A、B為非空集合,如果按照某個特定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數,寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數的定義域,與x相對應的y的值叫做函數值,函數值的集合B={f(x)∣x∈A}叫做函數的值域。2、函數定義域的解題思路:⑴若x處于分母位置,則分母x不能為0。⑵偶次方根的被開方數不小于0。⑶對數式的真數必須大于0。⑷指數對數式的底,不得為1,且必須大于0。⑸指數為0時,底數不得為0。⑹如果函數是由一些基本函數通過四則運算結合而成的,那么,它的定義域是各個部分都有意義的x值組成的集合。⑺實際問題中的函數的定義域還要保證實際問題有意義。3、相同函數⑴表達式相同:與表示自變量和函數值的字母無關。⑵定義域一致,對應法則一致。4、函數值域的求法⑴觀察法:適用于初等函數及一些簡單的由初等函數通過四則運算得到的函數。⑵圖像法:適用于易于畫出函數圖像的函數已經分段函數。⑶配方法:主要用于二次函數,配方成y=(x-a)2+b的形式。⑷代換法:主要用于由已知值域的函數推測未知函數的值域。5、函數圖像的變換⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進行加減。⑵伸縮變換:在x前加上系數。⑶對稱變換:高中階段不作要求。6、映射:設A、B是兩個非空集合,如果按某一個確定的對應法則f,使對于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應,那么就稱對應f:A→B為從集合A到集合B的映射。⑴集合A中的每一個元素,在集合B中都有象,并且象是唯一的。⑵集合A中的不同元素,在集合B中對應的象可以是同一個。⑶不要求集合B中的每一個元素在集合A中都有原象。7、分段函數⑴在定義域的不同部分上有不同的解析式表達式。⑵各部分自變量和函數值的取值范圍不同。⑶分段函數的定義域是各段定義域的交集,值域是各段值域的并集。8、復合函數:如果(u∈M),u=g(x)(x∈A),則,y=f[g(x)]=F(x)(x∈A),稱為f、g的復合函數。高一數學必修五知識點總結空間兩條直線只有三種位置關系:平行、相交、異面1、按是否共面可分為兩類:(1)共面:平行、相交(2)異面:異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法2、若從有無公共點的角度看可分為兩類:(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面高一數學直線和平面的位置關系直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行①直線在平面內——有無數個公共點②直線和平面相交——有且只有一個公共點直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。空間向量法(找平面的法向量)規定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內,所成的角為0°角由此得直線和平面所成角的取值范圍為[0°,90°]最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直直線和平面垂直直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面高一數學知識點重點總結歸納篇3(1)兩個平面互相平行的定義:空間兩平面沒有公共點(2)兩個平面的位置關系:兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。a、平行兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交二面角(1)半平面:平面內的'一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°](3)二面角的棱:這一條直線叫做二面角的棱。(4)二面角的面:這兩個半平面叫做二面角的面。(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。(6)直二面角:平面角是直角的二面角叫做直二面角。兩平面垂直兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于交線的直線垂直于另一個平面。二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)棱錐棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。棱錐的性質:(1)側棱交于一點。側面都是三角形(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方正棱錐正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。正棱錐的性質:(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。(3)多個特殊的直角三角形a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。集合集合具有某種特定性質的事物的總體。這里的“事物”可以是人,物品,也可以是數學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G、F、P、,1845年—1918年,德國數學家先驅,是集合論的創始者,目前集合論的基本思想已經滲透到現代數學的所有領域。集合,在數學上是一個基礎概念。什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。集合與集合之間的關系某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。高一數學知識點重點總結歸納篇4集合與元素一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對于這個班級集合來說,是它的一個元素;而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。班級相對于你是集合,相對于學校是元素,參照物不同,得到的結論也不同,可見,是集合還是元素,并不是絕對的。解集合問題的關鍵解集合問題的關鍵:弄清集合是由哪些元素所構成的,也就是將抽象問題具體化、形象化,將特征性質描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數軸來表示集合,或是集合的元素為有序實數對時,可用平面直角坐標系中的圖形表示相關的集合等。高一數學知識點重點總結歸納篇5指數函數(1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。(2)指數函數的值域為大于0的實數集合。(3)函數圖形都是下凹的。(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。(5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。(6)函數總是在某一個方向上無限趨向于X軸,永不相交。(7)函數總是通過(0,1)這點。(8)顯然指數函數。反比例函數形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。自變量x的取值范圍是不等于0的一切實數。反比例函數圖像性質:反比例函數的圖像為雙曲線。由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。k分別為正和負(2和-2)時的函數圖像。當K>0時,反比例函數圖像經過一,三象限,是減函數當K<0時,反比例函數圖像經過二,四象限,是增函數反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。知識點:1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。2.對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)高一數學知識點重點總結歸納篇61、柱、錐、臺、球的結構特征(1)棱柱:定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。表示:用各頂點字母,如五棱柱ABCDE?A'B'C'D'E'或用對角線的端點字母,如五棱柱AD'幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等表示:用各頂點字母,如五棱錐P?A'B'C'D'E'幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。(3)棱臺:定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等表示:用各頂點字母,如五棱臺P?A'B'C'D'E'幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。高一數學知識點重點總結歸納篇7圓的方程定義:圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。直線和圓的位置關系:1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ0,直線和圓相交.②Δ=0,直線和圓相切.③Δb>0)或+=1(a>b>0)(其中,a2=b2+c2)2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)3.拋物線:y2=±2px(p>0),x2=±2py(p>0)三、圓錐曲線的性質1.橢圓:+=1(a>b>0)(1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=±2.雙曲線:-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=-高一數學知識點重點總結歸納篇81、高一數學知識點總結:集合一、集合有關概念1.集合的含義2.集合的中元素的三個特性:(1)元素的確定性如:世界上最高的山(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。注意:常用數集及其記法:非負整數集(即自然數集)記作:N正整數集N或N+整數集Z有理數集Q實數集R1)列舉法:{a,b,c……}2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x∈R|x-3>2},{x|x-3>2}3)語言描述法:例:{不是直角三角形的三角形}4)Venn圖:4、集合的分類:(1)有限集含有有限個元素的集合(2)無限集含有無限個元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}2、高一數學知識點總結:集合間的基本關系1.“包含”關系—子集注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作A?/B或B?/A2.“相等”關系:A=B(5≥5,且5≤5,則5=5)實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。A?A②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同時B?A那么A=B3.不含任何元素的集合叫做空集,記為Φ規定:空集是任何集合的子集,空集是任何非空集合的真子集。有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。高一數學知識點重點總結歸納篇9兩個平面的位置關系(1)兩個平面互相平行的定義:空間兩平面沒有公共點(2)兩個平面的位置關系:兩個平面平行沒有公共點;兩個平面相交有一條公共直線。a、平行兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,那么這兩個平面平行。兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交二面角(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°](3)二面角的棱:這一條直線叫做二面角的棱。(4)二面角的面:這兩個半平面叫做二面角的面。(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。(6)直二面角:平面角是直角的二面角叫做直二面角。兩平面垂直兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關系)。高一數學知識點重點總結歸納篇10知識點1一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1、元素的確定性;2、元素的互異性;3、元素的無序性說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}2、集合的表示方法:列舉法與描述法。注意啊:常用數集及其記法:非負整數集(即自然數集)記作:N正整數集N或N+整數集Z有理數集Q實數集R關于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。①語言描述法:例:{不是直角三角形的三角形}②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}4、集合的分類:1、有限集含有有限個元素的集合2、無限集含有無限個元素的集合3、空集不含任何元素的集合例:{x|x2=—5}知識點2I、定義與定義表達式一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)則稱y為x的二次函數。二次函數表達式的右邊通常為二次三項式。II、二次函數的三種表達式一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)頂點式:y=a(x—h)^2+k[拋物線的頂點P(h,k)]交點式:y=a(x—x?)(x—x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]注:在3種形式的互相轉化中,有如下關系:h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2aIII、二次函數的圖像在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。IV、拋物線的性質1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)2、拋物線有一個頂點P,坐標為P(—b/2a,(4ac—b^2)/4a)當—b/2a=0時,P在y軸上;當Δ=b^2—4ac=0時,P在x軸上。3、二次項系數a決定拋物線的開口方向和大小。當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。知識點31、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)2、拋物線有一個頂點P,坐標為P(—b/2a,(4ac—b’2)/4a)當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。3、二次項系數a決定拋物線的開口方向和大小。當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。4、一次項系數b和二次項系數a共同決定對稱軸的位置。當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右。5、常數項c決定拋物線與y軸交點。拋物線與y軸交于(0,c)6、拋物線與x軸交點個數Δ=b’2—4ac>0時,拋物線與x軸有2個交點。Δ=b’2—4ac=0時,拋物線與x軸有1個交點。Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個式子除以2a)知識點4對數函數對數函數的一般形式為,它實際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。右圖給出對于不同大小a所表示的函數圖形:可以看到對數函數的圖形只不過的指數函數的圖形的關于直線y=x的對稱圖形,因為它們互為反函數。(1)對數函數的定義域為大于0的實數集合。(2)對數函數的值域為全部實數集合。(3)函數總是通過(1,0)這點。(4)a大于1時,為單調遞增函數,并且上凸;a小于1大于0時,函數為單調遞減函數,并且下凹。(5)顯然對數函數。知識點5方程的根與函數的零點1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點。3、函數零點的求法:(1)(代數法)求方程的實數根;(2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點。4、二次函數的零點:(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。高一數學知識點重點總結歸納篇11考點一、映射的概念1、了解對應大千世界的對應共分四類,分別是:一對一多對一一對多多對多2、映射:設A和B是兩個非空集合,如果按照某種對應關系f,對于集合A中的任意一個元素x,在集合B中都存在的一個元素y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個映射(mapping).映射是特殊的對應,簡稱“對一”的對應。包括:一對一多對一考點二、函數的概念1、函數:設A和B是兩個非空的數集,如果按照某種確定的對應關系f,對于集合A中的任意一個數x,在集合B中都存在確定的數y與之對應,那么,就稱對應f:A→B為集合A到集合B的一個函數。記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數的定義域;與x的值相對應的y的值函數值,函數值的集合叫做函數的值域。函數是特殊的映射,是非空數集A到非空數集B的映射。2、函數的三要素:定義域、值域、對應關系。這是判斷兩個函數是否為同一函數的依據。3、區間的概念:設a,bR,且a①(a,b)={xa②(a,+∞)={>a}③[a,+∞)={≥a}④(-∞,b)={考點三、函數的表示方法1、函數的三種表示方法列表法圖象法解析法2、分段函數:定義域的不同部分,有不同的對應法則的函數。注意兩點:①分段函數是一個函數,不要誤認為是幾個函數。②分段函數的定義域是各段定義域的并集,值域是各段值域的并集。考點四、求定義域的幾種情況①若f(x)是整式,則函數的定義域是實數集R;②若f(x)是分式,則函數的定義域是使分母不等于0的實數集;③若f(x)是二次根式,則函數的定義域是使根號內的式子大于或等于0的實數集合;④若f(x)是對數函數,真數應大于零。⑤因為零的零次冪沒有意義,所以底數和指數不能同時為零。⑥若f(x)是由幾個部分的數學式子構成的,則函數的定義域是使各部分式子都有意義的實數集合;⑦若f(x)是由實際問題抽象出來的函數,則函數的定義域應符合實際問題高一數學知識點重點總結歸納篇12為了豐富校園文化生活,激發學生學習數學的興趣,培養學生學習數學、應用數學知識點的能力,展示學生在數學學科學習中的成果,特舉行20xx年上學期高一數學知識競賽活動,本次數學競賽是在教務處、年級組的領導下,數學組的組織下開展的一項活動。競賽時間:20xx年4月17日17:30——19:00競賽知識范圍:數學必修一集合、函數,數學必修二立體幾何初步,數學必修三統計、算法初步、概率,數學必修四三角函數的定義。競賽規則:競賽采用閉卷考試的`形式,參賽考生獨立完成試卷。試卷總分100分,考試時間90分鐘。監考老師及閱卷老師:高一全體數學教師。獎項設立:本次競賽下設一等獎、二等獎、三等獎。活動總結:教務處、年級組、數學備課組本著豐富校園文化生活,激發學生學習數學的興趣,培養學生學習數學、應用數學知識點的能力,展示學生學習數學成果的目的,組織開展了我校高一年級20xx年度上學期第一次數學知識競賽活動。本次活動得到了學校領導的大力支持,上下同心,教師們通力合作,學生縝密思考,認真作答,在競賽中無違紀現象。縱觀學生答卷也呈現出學生學習上的一些問題,如基礎知識不扎實,審題不仔細,書寫不規范。對于這些問題,在今后教學中我們會加強要求,多監督,讓學生打好基礎并養成良好的學習習慣。我們更會本著一切為學生,更加努力工作,使我們學生的素質更好地得到提高!高一數學知識點重點總結歸納篇13圓的方程定義:圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。直線和圓的位置關系:1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ0,則a可以是任意實數;排除了為0這種可能,即對于x0的所有實數,q不能是偶數;排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。可以看到:(1)所有的圖形都通過(1,1)這點。(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。(4)當a小于0時,a越小,圖形傾斜程度越大。(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。(6)顯然冪函數。解題方法:換元法解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。練習題:1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。(1)求f(log2x)的最小值及對應的x值;(2)x取何值時,f(log2x)>f(1)且log2[f(x)]2、已知函數f(x)=3x+k(k為常數),A(—2k,2)是函數y=f—1(x)圖象上的點。(1)求實數k的值及函數f—1(x)的解析式;(2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實數m的取值范圍。高一數學知識點重點總結歸納篇14集合的有關概念1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件2)集合的表示方法:常用的有列舉法、描述法和圖文法3)集合的分類:有限集,無限集,空集。4)常用數集:N,Z,Q,R,N子集、交集、并集、補集、空集、全集等概念1)子集:若對x∈A都有x∈B,則AB(或AB);2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∪B={x|x∈A或x∈B}5)補集:CUA={x|xA但x∈U}注意:A,若A≠?,則?A;若且,則A=B(等集)集合與元素掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。子集的幾個等價關系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。交、并集運算的性質①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。練習題:已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系A)M=NPB)MN=PC)MNPD)NPM分析一:從判斷元素的共性與區別入手。解答一:對于集合M:{x|x=,m∈Z};對于集合N:{x|x=,n∈Z}對于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數,而6m+1表示被6除余1的數,所以MN=P,故選B。高一數學知識點重點總結歸納篇15一、集合有關概念1.集合的含義2.集合的中元素的三個特性:(1)元素的確定性,(2)元素的互異性,(3)元素的無序性,3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。?注意:常用數集及其記法:非負整數集(即自然數集)記作:N正整數集N*或N+整數集Z有理數集Q實數集R1)列舉法:{a,b,c……}2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x?R|x-3>2},{x|x-3>2}3)語言描述法:例:{不是直角三角形的三角形}4)Venn圖:4、集合的分類:(1)有限集含有有限個元素的集合(2)無限集含有無限個元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關系1.“包含”關系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關系:A=B(5≥5,且5≤5,則5=5)實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。A?A②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同時B?A那么A=B3.不含任何元素的集合叫做空集,記為Φ規定:空集是任何集合的子集,空集是任何非空集合的真子集。?有n個元素的集合,含有2n個子集,2n-1個真子集三、集合的運算運算類型交集并集補集定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)二、函數的有關概念1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.注意:1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開方數不小于零;(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1.(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零,(7)實際問題中的函數的定義域還要保證實際問題有意義.相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致(兩點必須同時具備)2.值域:先考慮其定義域(1)觀察法(2)配方法(3)代換法3.函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.(2)畫法A、描點法:B、圖象變換法常用變換方法有三種1)平移變換2)伸縮變換3)對稱變換4.區間的概念(1)區間的分類:開區間、閉區間、半開半閉區間(2)無窮區間(3)區間的數軸表示.5.映射一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作f:A→B6.分段函數(1)在定義域的不同部分上有不同的解析表達式的函數。(2)各部分的自變量的取值情況.(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。二.函數的性質1.函數的單調性(局部性質)(1)增函數設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1如果對于區間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.注意:函數的單調性是函數的局部性質;(2)圖象的特點如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.(3).函數單調區間與單調性的判定方法(A)定義法:○1任取x1,x2∈D,且x1○2作差f(x1)-f(x2);○3變形(通常是因式分解和配方);○4定號(即判斷差f(x1)-f(x2)的正負);○5下結論(指出函數f(x)在給定的區間D上的單調性).(B)圖象法(從圖象上看升降)(C)復合函數的單調性復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成其并集.8.函數的奇偶性(整體性質)(1)偶函數一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.(2).奇函數一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.(3)具有奇偶性的函數的圖象的特征偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.利用定義判斷函數奇偶性的步驟:○1首先確定函數的定義域,并判斷其是否關于原點對稱;○2確定f(-x)與f(x)的關系;○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數的圖象判定.9、函數的解析表達式(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.(2)求函數的解析式的主要方法有:1)湊配法2)待定系數法3)換元法4)消參法10.函數最大(小)值(定義見課本p36頁)○1利用二次函數的性質(配方法)求函數的最大(小)值○2利用圖象求函數的最大(小)值○3利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);高一數學知識點重點總結歸納篇16直線和平面垂直直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。多面體1、棱柱棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。棱柱的性質(1)側棱都相等,側面是平行四邊形(2)兩個底面與平行于底面的截面是全等的多邊形(3)過不相鄰的兩條側棱的截面(對角面)是平行四邊形2、棱錐棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐棱錐的性質:(1)側棱交于一點。側面都是三角形(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方3、正棱錐正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。正棱錐的性質:(1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。(3)多個特殊的直角三角形a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。高一數學知識點重點總結歸納篇17歸納11、“包含”關系—子集注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2、“相等”關系(5≥5,且5≤5,則5=5)實例:設A={x|x2—1=0}B={—1,1}“元素相同”結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B①任何一個集合是它本身的子集。AíA②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同時BíA那么A=B3、不含任何元素的集合叫做空集,記為Φ規定:空集是任何集合的子集,空集是任何非空集合的真子集。歸納2形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。自變量x的取值范圍是不等于0的一切實數。反比例函數圖像性質:反比例函數的圖像為雙曲線。由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。上面給出了k分別為正和負(2和—2)時的函數圖像。當K>0時,反比例函數圖像經過一,三象限,是減函數當K<0時,反比例函數圖像經過二,四象限,是增函數反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。知識點:1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)歸納3方程的根與函數的零點1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點。3、函數零點的求法:(1)(代數法)求方程的實數根;(2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點。4、二次函數的零點:(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。歸納3形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。自變量x的取值范圍是不等于0的一切實數。反比例函數圖像性質:反比例函數的圖像為雙曲線。由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。當K>0時,反比例函數圖像經過一,三象限,是減函數當K<0時,反比例函數圖像經過二,四象限,是增函數反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。知識點:1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)歸納4冪函數的性質:對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;排除了為0這種可能,即對于x<0x=“”>0的所有實數,q不能是偶數;排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況、可以看到:(1)所有的圖形都通過(1,1)這點。(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。(4)當a小于0時,a越小,圖形傾斜程度越大。(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。(6)顯然冪函數無界。解題方法:換元法解數學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。高一數學知識點重點總結歸納篇181.函數知識:基本初等函數性質的考查,以導數知識為背景的函數問題;以向量知識為背景的函數問題;從具體函數的考查轉向抽象函數考查;從重結果考查轉向重過程考查;從熟悉情景的考查轉向新穎情景的考查。2.向量知識:向量具有數與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數等學科的綜合性問題。3.不等式知識:突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規劃問題為必考內容,不等式的性質與指數函數、對數函數、三角函數、二交函數等結合起來,考查不等式的性質、最值、函數的單調性等;證明不等式的試題,多以函數、數列、解析幾何等知識為背景,在知識網絡的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數的討論聯系在一起。考查學生的等價轉化能力和分類討論能力;以當前經濟、社會生產、生活為背景與不等式綜合的應用題仍將是高考的熱點,主要考查學生閱讀理解能力以及分析問題、解決問題的能力。4.立體幾何知識:20__年已經變得簡單,20__年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關系的考查,已經線面角,面面角和幾何體的體積計算等問題,都是重點考查內容。5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的位置關系,以及圓錐曲線幾何性質的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯立,定點,定值,范圍的考查,考試的難度降低。6.導數知識:導數的考查還是以理科19題,文科20題的形式給出,從常見函數入手,導數工具作用(切線和單調性)的考查,綜合性強,能力要求高;往往與公式、導數往往與參數的討論聯系在一起,考查轉化與化歸能力,但今年的難點整體偏低。7.開放型創新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。高一數學知識點重點總結歸納篇19圓的方程定義:圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。直線和圓的位置關系:1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關系。①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。①dR,直線和圓相離、2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。切線的性質⑴圓心到切線的距離等于圓的半徑;⑵過切點的半徑垂直于切線;⑶經過圓心,與切線垂直的直線必經過切點;⑷經過切點,與切線垂直的直線必經過圓心;當一條直線滿足(1)過圓心;(2)過切點;(3)垂直于切線三個性質中的兩個時,第三個性質也滿足。切線的判定定理經過半徑的外端點并且垂直于這條半徑的直線是圓的切線。切線長定理從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。高一數學知識點重點總結歸納篇20集合的運算運算類型交集并集補集定義域R定義域R值域>0值域>0在R上單調遞增在R上單調遞減非奇非偶函數非奇非偶函數函數圖象都過定點(0,1)函數圖象都過定點(0,1)注意:利用函數的單調性,結合圖象還可以看出:(1)在[a,b]上,值域是或;(2)若,則;取遍所有正數當且僅當;(3)對于指數函數,總有;二、對數函數(一)對數1.對數的概念:一般地,如果,那么數叫做以為底的對數,記作:(—底數,—真數,—對數式)說明:○1注意底數的限制,且;○2;○3注意對數的書寫格式.兩個重要對數:○1常用對數:以10為底的對數;○2自然對數:以無理數為底的對數的對數.指數式與對數式的互化冪值真數=N=b底數指數對數(二)對數的運算性質如果,且,,,那么:○1+;○2-;○3.注意:換底公式:(,且;,且;).利用換底公式推導下面的結論:(1);(2).(3)、重要的公式①、負數與零沒有對數;②、,③、對數恒等式(二)對數函數1、對數函數的概念:函數,且叫做對數函數,其中是自變量,函數的定義域是(0,+∞).注意:○1對數函數的定義與指數函數類似,都是形式定義,注意辨別。如:,都不是對數函數,而只能稱其為對數型函數.○2對數函數對底數的限制:,且.2、對數函數的性質:a>100時,開口方向向上,a0時,拋物線向上開口;當a1,且∈_.當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。注意:當是奇數時,當是偶數時,2.分數指數冪正數的分數指數冪的意義,規定:0的正分數指數冪等于0,0的負分數指數冪沒有意義指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.3.實數指數冪的運算性質(二)指數函數及其性質1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.注意:指數函數的底數的取值范圍,底數不能是負數、零和1.2、指數函數的圖象和性質【函數的應用】1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:方程有實數根函數的圖象與軸有交點函數有零點.3、函數零點的求法:求函數的零點:1(代數法)求方程的實數根;2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點.4、二次函數的零點:二次函數.1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.3)△高一數學知識點重點總結歸納篇21函數圖象知識歸納(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的函數C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.(2)畫法A、描點法:B、圖象變換法常用變換方法有三種1)平移變換2)伸縮變換3)對稱變換4.高中數學函數區間的概念(1)函數區間的分類:開區間、閉區間、半開半閉區間(2)無窮區間5.映射一般地,設A、B是兩個非空的函數,如果按某一個確定的對應法則f,使對于函數A中的任意一個元素x,在函數B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數A到函數B的一個映射。記作“f(對應關系):A(原象)B(象)”對于映射f:A→B來說,則應滿足:(1)函數A中的每一個元素,在函數B中都有象,并且象是的;(2)函數A中不同的元素,在函數B中對應的象可以是同一個;(3)不要求函數B中的每一個元素在函數A中都有原象。6.高中數學函數之分段函數(1)在定義域的不同部分上有不同的解析表達式的函數。(2)各部分的自變量的取值情況.(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。高一數學知識點重點總結歸納篇22知識點1一、集合有關概念1、集合的'含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:1、元素的確定性;2、元素的互異性;3、元素的無序性說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。(4)集合元素的三個特性使集合本身具有了確定性和整體性。3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}2、集合的表示方法:列舉法與描述法。注意啊:常用數集及其記法:非負整數集(即自然數集)記作:N正整數集N或N+整數集Z有理數集Q實數集R關于“屬于”的概念集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。①語言描述法:例:{不是直角三角形的三角形}②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}4、集合的分類:1、有限集含有有限個元素的集合2、無限集含有無限個元素的集合3、空集不含任何元素的集合例:{x|x2=—5}知識點2I、定義與定義表達式一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a0時,拋物線向上開口;當a0時,拋物線向上開口;當a0),對稱軸在y軸左;當a與b異號時(即ab0時,拋物線與x軸有2個交點。Δ=b’2—4ac=0時,拋物線與x軸有1個交點。Δ=b’2—4ac0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。(2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。(3)△高一數學知識點重點總結歸納篇23一、復合函數定義:設y=f(u)的定義域為A,u=g(x)的值域為B,若AB,則y關于x函數的y=f[g(x)]叫做函數f與g的復合函數,u叫中間量.二、復合函數定義域問題:(一)例題剖析:(1)、已知f(x)的定義域,求fg(x)的定義域思路:設函數f(x)的定義域為D,即xD,所以f的作用范圍為D,又f對g(x)作用,作用范圍不變,所以g(x)D,解得xE,E為fg(x)的定義域。例1.設函數f(u)的定義域為(0,1),則函數f(lnx)的定義域為_____________。解析:函數f(u)的定義域為(0,1)即u(0,1),所以f的作用范圍為(0,1)又f對lnx作用,作用范圍不變,所以0lnx1解得x(1,e),故函數f(lnx)的定義域為(1,e)1,則函數ff(x)的定義域為______________。x11解析:先求f的作用范圍,由f(x),知x1x1例2.若函數f(x)即f的作用范圍為xR|x1,又f對f(x)作用所以f(x)R且f(x)1,即ff(x)中x應滿足x1f(x)1x1即1,解得x1且x21x1故函數ff(x)的定義域為xR|x1且x2(2)、已知fg(x)的定義域,求f(x)的定義域思路:設fg(x)的定義域為D,即xD,由此得g(x)E,所以f的作用范圍為E,又f對x作用,作用范圍不變,所以xE,E為f(x)的定義域。例3.已知f(32x)的定義域為x1,2,則函數f(x)的定義域為_________。解析:f(32x)的定義域為1,2,即x1,2,由此得32x1,5所以f的作用范圍為1,5,又f對x作用,作用范圍不變,所以x1,5即函數f(x)的定義域為1,5x2例4.已知f(x4)lg2,則函數f(x)的定義域為______________。x82x2x20解析:先求f的作用范圍,由f(x4)lg2,知2x8x82解得x44,f的作用范圍為(4,),又f對x作用,作用范圍不變,所以2x(4,),即f(x)的定義域為(4,)(3)、已知fg(x)的定義域,求fh(x)的定義域思路:設fg(x)的定義域為D,即xD,由此得g(x)E,f的作用范圍為E,又f對h(x)作用,作用范圍不變,所以h(x)E,解得xF,F為fh(x)的定義域。例5.若函數f(2x)的定義域為1,1,則f(log2x)的定義域為____________。解析:f(2)的定義域為1,1,即x1,1,由此得2,22xx11f的作用范圍為,221又f對log2x作用,所以log2x,2,解得x2即f(log2x)的定義域為2,42,4評注:函數定義域是自變量x的取值范圍(用集合或區間表示)f對誰作用,則誰的范圍是f的作用范圍,f的作用對象可以變,但f的作用范圍不會變。利用這種理念求此類定義域問題會有“得來全不費功夫”的感覺,值得大家探討。三、復合函數單調性問題(1)引理證明已知函數yf(g(x)).若ug(x)在區間(a,b)上是減函數,其值域為(c,d),又函數yf(u)在區間(c,d)上是減函數,那么,原復合函數yf(g(x))在區間(a,b)上是增函數.證明:在區間(a,b)內任取兩個數x1,x2,使ax1x2b因為ug(x)在區間(a,b)上是減函數,所以g(x1)g(x2),記u1g(x1),u2g(x2)即u1u2,且u1,u2(c,d)因為函數yf(u)在區間(c,d)上是減函數,所以f(u1)f(u2),即f(g(x1))f(g(x2)),故函數yf(g(x))在區間(a,b)上是增函數.(2).復合函數單調性的判斷復合函數的單調性是由兩個函數共同決定。為了記憶方便,我們把它們總結成一個圖表:yf(u)ug(x)yf(g(x))增增增減減增減減減增以上規律還可總結為:“同向得增,異向得減”或“同增異減”.(3)、復合函數yf(g(x))的單調性判斷步驟:確定函數的定義域;將復合函數分解成兩個簡單函數:yf(u)與ug(x)。分別確定分解成的兩個函數的單調性;若兩個函數在對應的區間上的單調性相同(即都是增函數,或都是減函數),則復合后的函數yf(g(x))為增函數;若兩個函數在對應的區間上的單調性相異(即一個是增函數,而另一個是減函數),則復合后的函數yf(g(x))為減函數。(4)例題演練例1、求函數ylog1(x2x3)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論