




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第=page11頁,共=sectionpages11頁2024-2025學(xué)年九師聯(lián)盟高二下學(xué)期5月聯(lián)考數(shù)學(xué)試題一、單選題:本題共8小題,每小題5分,共40分。在每小題給出的選項中,只有一項是符合題目要求的。1.已知函數(shù)f(x)=ln2x,則f′(x)=(
)A.12x B.2x C.1x2.對兩組數(shù)據(jù)進行統(tǒng)計,獲得如圖所示的散點圖,關(guān)于其相關(guān)系數(shù)的比較,正確的是(
)
A.r1<?r2<0 B.r23.已知f′(x)是函數(shù)f(x)=ex+ax+c(a,c∈R)的導(dǎo)函數(shù),若f′(0)=3,且f(x)在[0,1]上的最大值為5,則c的值為A.1 B.?1 C.3+e D.3?e4.若函數(shù)f(x)=13x3?axA.(?2,1) B.(?∞,?2)∪(1,+∞)
C.[?2,1] D.(?∞,?2]∪[1,+∞)5.若數(shù)列{an}滿足a1=2,aA.?1 B.12 C.2 D.6.(x5?2)(xA.?80 B.80 C.?160 D.1607.設(shè)隨機變量Z~N(μ,1),函數(shù)f(x)=x3-3x2+Z?x在定義域R上是單調(diào)遞增函數(shù)的概率為12,則P(1<Z≤2)=()附:若Z~N(μ,σ2),則P(μ-σ<Z≤μ+σ)≈0.683,P(μ-2σ<Z≤μ+2σA.0.1587 B.0.1355 C.0.2718 D.0.34138.若函數(shù)f(x)=x+aex(a∈R,e是自然對數(shù)的底數(shù))有兩個零點,則aA.a>0 B.a=1e2 C.a≥二、多選題:本題共3小題,共18分。在每小題給出的選項中,有多項符合題目要求。9.有三名男生、兩名女生排隊照相,五個人排成一排,則下列說法正確的有(
)A.如果兩名女生必須相鄰,那么有48種不同排法
B.如果三名男生均不相鄰,那么有12種不同排法
C.如果女生不能站在兩端,那么有48種不同排法
D.如果三名男生不能連排在一起,那么有108種不同的排法10.已知點R(x0,2)在拋物線C:x2=2py(p>0)上,過C的焦點F的直線與C相交于A,B兩點,C在A,B兩點處的切線相交于點P,AB的中點是QA.x0=22 B.C的準線方程是y=?1
C.點Q在拋物線y=12x211.設(shè)函數(shù)f(x)=2x+1x+2,數(shù)列{an}滿足a2A.a1=3 B.數(shù)列{an+1an三、填空題:本題共3小題,每小題5分,共15分。12.若焦點在y軸上的雙曲線C2與雙曲線C1:x216?13.設(shè)兩個等差數(shù)列{an}、{bn}的前n項和分別為Sn、Tn,若對任意正整數(shù)n都有14.若e為自然對數(shù)的底數(shù),f(x)是定義在R上的函數(shù),且f(x)+f′(x)<1,f(0)?4=0,則不等式exf(x)>ex+3四、解答題:本題共5小題,共77分。解答應(yīng)寫出文字說明,證明過程或演算步驟。15.(本小題13分)已知各項均不相等的等差數(shù)列{an}的前n項和為Sn,S2=3,且(1)求{an(2)若bn=2an?an16.(本小題15分)甲、乙兩人用同一臺機床加工同一規(guī)格的零件,隨機抽取他們加工后的零件各50個,得到他們加工后的零件尺寸x(單位:cm)及個數(shù)y,如下表:零件尺寸x1.011.021.031.041.05零件個數(shù)y甲4520156乙9715811已知一等品零件尺寸與1.03(cm)的誤差不超過0.01(cm),其余零件為二等品.(1)試根據(jù)上述數(shù)據(jù)建立一個2×2列聯(lián)表,并判斷能否有95%的把握認為加工后的零件是不是一等品與甲、乙有關(guān)?(2)如果從已經(jīng)抽檢出的這100個零件中,按照甲、乙分層隨機抽樣的方法抽取7個一等品零件,再從這7個零件中隨機抽取4個零件送給有意向購買此零件的商家進行試用.設(shè)乙加工的零件送給商家試用的個數(shù)為隨機變量X,求X的分布列與數(shù)學(xué)期望.參考公式:χ2=n(ad?bc參考數(shù)據(jù):α=P0.100.050.025k2.7063.8415.02417.(本小題15分)
如圖,在三棱柱ABC?A1B1C1中,C1B=C1C,AB⊥AC(1)求三棱柱ABC?A1(2)求直線B1C1與平面18.(本小題17分)已知函數(shù)y=F(x)的定義域為I,區(qū)間[a,b]是I的子集,若y=F(x)的圖象上存在兩點A(a,F(a)),B(b,F(b)),使直線AB恰好是曲線y=F(x)的一條切線,且A,B為切點,記直線AB的方程為y=?G(x),如果?x∈[a,b]都有F(x)≥G(x),則稱函數(shù)y=F(x)是“橋函數(shù)”,稱A,B兩點為“橋墩”.(1)若A(?π2,?1),B(3π2,?1),試說明函數(shù)y=(2)判斷函數(shù)f(x)=1?x2與g(x)=x+sinx19.(本小題17分)已知過點(1,32)的橢圓C:(1)求橢圓C的方程;(2)已知點A是橢圓C的左頂點,直線l:y=kx+m與橢圓C相交于P,Q兩點,且P,Q兩點均不與點A重合;(ⅰ)若直線l與圓x2+y2(ⅱ)若直線AP,AQ的斜率之積為?14,證明:直線l過定點,并求出定點的坐標.參考答案1.C
2.D
3.D
4.B
5.A
6.C
7.B
8.D
9.AB
10.BCD
11.BCD
12.5313.172914.(?∞,0)
15.解:(1)設(shè)數(shù)列{an}的公差為d,則d≠0,
由a42=a2a8,S2=3得(a1+3d)2=(a1+d)(a1+7d)2a1+d=3,
化簡得d2=a1d216.解:(1)2×2列聯(lián)表為:一等品零件數(shù)二等品零件數(shù)甲401050乙302050合計7030100由列聯(lián)表得:χ2=100×(40×20?30×10)270×30×50×50=10021>3.841,
所以有95%的把握認為加工后零件是否為一等品與甲、乙有關(guān).
(2)根據(jù)分層抽樣的方法,甲乙一等品的零件數(shù)之比為:甲乙=43,
所以抽取出的7個一等品零件中,甲加工的4個,乙加工的3個,
X的所有取值為:0,1,2,3,
X0123P112184E(X)=0×13517.解:(1)因為C1B=C1C,D是BC的中點,
所以BC⊥C1D,同理BC⊥AD,
又C1D∩AD=D,C1D,AD?平面AC1D,
所以BC⊥平面AC1D,
又BC?平面ABC,所以平面ABC⊥平面AC1D,
又平面ABC∩平面AC1D=AD,
作C1H⊥AD交AD于點H,則C1H⊥底面ABC,如圖,
C1H就是三棱柱ABC?A1B1C1的高,
又AB=AC=4,AB⊥AC,
所以BC=AB2+AC2=42,AD=12BC=22,
又C1A=C1D=2,所以AD2=C1A2+C1D2,
所以△C1AD是等腰直角三角形,所以C1H=12AD=2,
所以三棱柱ABC?A1B1C1的體積V=12AB×AC×C1H=12×4×4×18.解:(1)因為y=sinx,y′=cosx,
所以函數(shù)y=sinx的圖象在點A(?π2,?1)處的切線方程是y+1=0?(x+π2),即y=?1,
同理可得函數(shù)y=sinx的圖象在點B(3π2,?1)處的切線方程也是y=?1,
因此,經(jīng)過A,B兩點的直線AB:y=?1恰好是曲線y=F(x)的一條切線,
又因為sinx≥?1對x∈[?π2,3π2]恒成立,
所以函數(shù)y=sinx是以A,B兩點為“橋墩”的“橋函數(shù)”.
(2)函數(shù)f(x)=1?x2不是“橋函數(shù)”,函數(shù)g(x)=x+sinx是“橋函數(shù)”,理由如下:
對于函數(shù)f(x)=1?x2,因為f′(x)=?2x,
所以由f′(x)=?2x圖象可知,導(dǎo)函數(shù)f′(x)在(?∞,+∞)上是減函數(shù),
所以在函數(shù)f(x)的圖象上的任意兩點A,B處的切線的斜率都不相同,
不滿足“直線AB恰好是曲線y=f(x)的一條切線,且A,B為切點”,
所以函數(shù)f(x)=1?x2不是“橋函數(shù)”;
對于函數(shù)g(x)=x+sinx,我們先在函數(shù)g(x)的定義域(?∞,+∞)上找一個區(qū)間[a,b],
使函數(shù)g(x)=x+sinx的圖象上經(jīng)過A(a,g(a)),B(b,g(b))兩點的直線AB恰好是曲線g(x)=x+sinx的一條切線,且A,B為切點,
方法一:因為g(x)=x+sinx,g′(x)=1+cosx,設(shè)A(x1,x1+sinx1),B(x2,x2+sinx2),x1≠x2,
則曲線g(x)=x+sinx在A,B兩點處的切線方程分別為y=(1+cosx1)x+sinx1?x1cosx1,y=(1+cosx2)x+sinx2?x2cosx2,
令1+cosx1=1+cosx2sinx1?x1cosx1=sinx2?x2cosx2,
則cosx2=cosx1,所以x2=±x1+2kπ(k∈Z且x1≠x219.解:(1)由題意得1a2+94b2=1ca=12a2=b2+c2,解得a2=4b2=3,
所以橢圓C的方程為x24
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)殖場出租承包合同
- 高科技金融投資協(xié)議
- 2025合作伙伴招標合同文件
- 2025合同的變更條件和程序
- 班主任學(xué)生學(xué)業(yè)輔導(dǎo)與成長跟蹤服務(wù)協(xié)議
- 民族地區(qū)廠房出租與安全生產(chǎn)民族團結(jié)共建合同
- 2025柑橘買賣合同(橙子)
- 2025個人勞動合同范本
- 腸套疊手術(shù)實況解析
- 應(yīng)用文中考試題及答案
- 糞便檢查法寄生蟲檢查
- 浙江省杭州市拱墅區(qū)2024屆數(shù)學(xué)八年級下冊期末考試試題含解析
- 劍橋少兒英語二級期末考試試卷(真題)
- 年產(chǎn)5萬噸1,4-丁二醇的工藝流程設(shè)計
- GB/T 43825-2024犬狂犬病疫苗接種技術(shù)規(guī)范
- (高清版)TDT 1037-2013 土地整治重大項目可行性研究報告編制規(guī)程
- 中國石油加油站建設(shè)標準設(shè)計
- 數(shù)字醫(yī)療論文
- 二年級下冊數(shù)學(xué)無紙化測評方案
- 大學(xué)化學(xué)期末考試卷(含答案)
- 化工行業(yè)儀表典型事故分析報告
評論
0/150
提交評論