




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
光在材料中的傳播
Theequationsofopticsare
Maxwell’sequations.whereistheelectricfield,isthemagneticfield,risthechargedensity,eisthepermittivity,andmisthepermeabilityofthemedium.Maxwell’sequationssimplifytothewaveequationfortheelectricfield.whichhasasimplesine-wavesolution:LightisanElectromagneticWaveElectric(E)andmagnetic(B)fieldsareinphase.Theelectricfield,themagneticfield,andthepropagationdirectionareallperpendicular.
Whatisawave?Awaveisanythingthatmoves.Todisplaceanyfunctionf(x)totheright,justchangeitsargumentfromxtox-a,whereaisapositivenumber.Ifweleta=vt,wherevispositiveandtistime,thenthedisplacementwillincreasewithtime.Sorepresentsarightward,orforward,propagatingwave.Similarly,representsaleftward,orbackward,propagatingwave.v
willbethevelocityofthewave.f(x)f(x-3)f(x-2)f(x-1)x0123f(x-vt)f(x+vt)Theone-dimensionalwaveequationWe’llderivethewaveequationfromMaxwell’sequations.Hereitisinitsone-dimensionalformforscalar(i.e.,non-vector)functions,f:Lightwaves(actuallytheelectricfieldsoflightwaves)willbeasolutiontothisequation.Andvwillbethevelocityoflight.Thesolutiontotheone-dimensionalwaveequationwheref(u)canbeanytwice-differentiablefunction.Thewaveequationhasthesimplesolution:Proofthatf
(x
±
vt)solvesthewaveequationWritef
(x
±
vt)asf
(u),whereu=x±vt.Soand
Now,usethechainrule:
SoTandT
Substitutingintothewaveequation:QEDThe1DwaveequationforlightwavesWe’llusecosine-andsine-wavesolutions:
or
where:whereEisthelightelectricfieldAsimplerequationforaharmonicwave:
E(x,t)=Acos[(kx–wt)–q]Usethetrigonometricidentity:
cos(z–y)=cos(z)cos(y)+sin(z)sin(y)wherez=k
x–w
tandy=qtoobtain:
E(x,t)=Acos(kx–wt)cos(q)+Asin(kx–wt)sin(q)whichisthesameresultasbefore,
aslongas:
A
cos(q)=BandAsin(q)=CForsimplicity,we’lljustusetheforward-propagatingwave.Definitions:AmplitudeandAbsolutephase
E(x,t)=A
cos[(kx–wt)–q]
A=Amplitudeq=Absolutephase(orinitialphase)DefinitionsSpatialquantities:Temporalquantities:ThePhaseVelocityHowfastisthewavetraveling?Velocityisareferencedistancedividedbyareferencetime.Thephasevelocityisthewavelength/period:
v=l/tIntermsofthek-vector,k=2p/l,andtheangularfrequency,w=2p/t,thisis: v=w/k
ThePhaseofaWaveThisformulaisusefulwhenthewaveisreallycomplicated.Thephaseiseverythinginsidethecosine.
E(t)=A
cos(j),wherej=kx–wt–qIntermsofthephase,
w=–?j/?t
k=?j/?xAnd
–?j/?t
v=–––––––
?j/?xComplexnumbersSo,insteadofusinganorderedpair,(x,y),wewrite:
P=x+i
y
=A
cos(j)+iAsin(j)wherei=(-1)1/2
Considerapoint,P
=(x,y),ona2DCartesiangrid.Letthex-coordinatebetherealpartandthey-coordinatetheimaginarypartofacomplexnumber.Euler'sFormula
exp(ij)=cos(j)+isin(j)sothepoint,
P=Acos(j)+iAsin(j),canbewritten:
P=Aexp(ij)where
A=Amplitude
j=PhaseProofofEuler'sFormulaUseTaylorSeries:exp(ij)=cos(j)+isin(j)Ifwesubstitute
x=ijintoexp(x),then:ComplexnumbertheoremsMorecomplexnumbertheoremsAnycomplexnumber,z,canbewritten:
z=Re{z}+iIm{z}So
Re{z}=1/2(z+z*)and
Im{z}
=1/2i(z–z*)where
z*isthecomplexconjugateofz(i?–i)The"magnitude,"|z|,ofacomplexnumberis:
|z|2=zz*=Re{z}2+Im{z}2Toconvertzintopolarform,Aexp(ij):
A2=Re{z}2+Im{z}2
tan(j)=Im{z}/Re{z}Wecanalsodifferentiateexp(ikx)asiftheargumentwerereal.WavesusingcomplexnumbersTheelectricfieldofalightwavecanbewritten:
E(x,t)=Acos(kx–wt–q)Sinceexp(ij)=cos(j)+isin(j),
E(x,t)canalsobewritten:
E(x,t)=Re{Aexp[i(kx–wt–q)]}or
E(x,t)=1/2Aexp[i(kx–wt–q)]+c.c.where"+c.c."means"plusthecomplexconjugateofeverythingbeforetheplussign."Weoftenwritetheseexpressionswithoutthe?,Re,or+c.c.WavesusingcomplexamplitudesWecanlettheamplitudebecomplex:
wherewe'veseparatedtheconstantstufffromtherapidlychangingstuff.Theresulting"complexamplitude"is:
So:HowdoyouknowifE0isrealorcomplex? Sometimespeopleusethe"~",butnotalways. Soalwaysassumeit'scomplex.Addingwavesofthesamefrequency,butdifferentinitialphase,yieldsawaveofthesamefrequency.Thisisn'tsoobvioususingtrigonometricfunctions,butit'seasywithcomplexexponentials:whereallinitialphasesarelumpedintoE1,E2,andE3.The3Dwaveequationfortheelectricfieldanditssolution!or
whichhasthesolution:
where
andAlightwavecanpropagateinanydirectioninspace.Sowemustallowthespacederivativetobe3D:iscalleda“planewave.”Aplanewave'swave-frontsareequa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 目標明確的信息系統(tǒng)項目管理師試題及答案
- 項目成功因素研究試題及答案
- 公共服務政策的公平性與效率分析試題及答案
- 軟件設計師考試定制化復習試題及答案
- 計算機軟件測試在環(huán)境政策評估中的應用試題及答案
- 計算機軟件測試中的常見問題試題及答案
- 公共政策的全球視野與本土化探討試題及答案
- 軟件設計師考試技能提升路線試題及答案
- 現代公共政策理論框架試題及答案
- 如何建立健全公共政策的決策制度試題及答案
- 企業(yè)自主評價委托協議書
- 2025銀行面試題目及答案柜員
- 軟裝搭配與色彩運用考核試卷
- 2025年中國冶金錳礦石市場調查研究報告
- 2025年國際貿易實務課程考試題及答案
- 2025屆廣西欽州市東場中學七下數學期末復習檢測試題含解析
- 地方政府治理中的典型案例試題及答案
- “卉”心獨具工程制圖知到智慧樹期末考試答案題庫2025年昆明理工大學
- 電梯安全管理員培訓
- 通信工程安全試題及答案
- 河北開放大學2025年《醫(yī)用基礎化學#》形考任務2答案
評論
0/150
提交評論