




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精2017—2018學(xué)年度高三年級第一學(xué)期期中抽測數(shù)學(xué)一、填空題:本大題共14個小題,每小題5分,共70分.將答案填在答題紙上.1.設(shè)集合,,則.2.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則復(fù)數(shù)的實部為.3。函數(shù)的最小正周期為.4。已知一組數(shù)據(jù):87,,90,89,93的平均數(shù)為90,則該組數(shù)據(jù)的方差為.5.雙曲線的離心率為.6。從2個黃球,3個紅球中隨機(jī)取出兩個球,則兩球顏色不同的概率是.7。執(zhí)行如圖所示的算法流程圖,則輸出的值為.8.各棱長都為2的正四棱錐的體積為.9.已知公差不為零的等差數(shù)列的前項和為,且,若成等比數(shù)列,則的值為.10。如圖,在半徑為2的扇形中,,為弧上的一點,若,則的值為.11.已知函數(shù)(為自然對數(shù)的底數(shù)),若,則實數(shù)的取值范圍是.12。已知實數(shù)滿足,則的最小值為.13。已知是圓上的動點,點,若直線上總存在點,使點恰是線段的中點,則實數(shù)的取值范圍是.14。已知函數(shù),若存在,使,則實數(shù)的取值范圍是.二、解答題(本大題共6小題,共90分。解答應(yīng)寫出文字說明、證明過程或演算步驟.)15.已知的內(nèi)角所對應(yīng)的邊分別為,且.(1)求角的大小;(2)若,,求的面積.16。如圖,在三棱錐中,,,為的中點,為上一點,且平面,求證:(1)直線平面;(2)平面平面.17。如圖,有一塊半圓形空地,開發(fā)商計劃建一個矩形游泳池及其附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化,其中半圓的圓心為,半徑為,矩形的一邊在直線上,點在圓周上,在邊上,且,設(shè).(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;(2)求符合園林局要求的的余弦值.18.如圖,在平面直角坐標(biāo)系中,橢圓的左頂點為,離心率為,過點的直線與橢圓交于另一點,點為軸上的一點。(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是以點為直角頂點的等腰直角三角形,求直線的方程。19。已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且。(1)求數(shù)列和的通項公式;(2)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍。(3)是否存在正正數(shù),使成等差數(shù)列?若存在,求出所有滿足條件的;若不存在,請說明理由。20。已知函數(shù)(,是自然對數(shù)的底數(shù)).(1)若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求實數(shù)的取值范圍;(2)求函數(shù)的極值;(3)設(shè)函數(shù)圖像上任意一點處的切線為,求在軸上的截距的取值范圍.21.【選做題】本題包括A,B,C,D四小題,請選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答,若多做,則按作答的前兩小題評分,解答時應(yīng)寫出文字說明,證明過程或演算步驟.A.【選修4-1:幾何證明選講】如圖,是圓的切線,切點為,是過圓心的割線且交圓于點,過作圓的切線交于點,。求證:.B.【選修4—2:矩陣與變換】已知矩陣,若直線在矩陣對應(yīng)的變換作用下得到的直線過點,求實數(shù)的值。C.【選修4—4:坐標(biāo)系與參數(shù)方程】在極坐標(biāo)系中,圓的方程為,以極點為坐標(biāo)原點,極軸為軸正半軸建立平面直角坐標(biāo)系,設(shè)直線的參數(shù)方程為(為參數(shù)),若直線與圓恒有公共點,求實數(shù)的取值范圍.D.【選修4-5:不等式選講】設(shè)均為正數(shù),且,求證:。【必做題】第22題、第23題,每題10分,共計20分,請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟。22.如圖,在三棱錐中,兩兩互相垂直,點分別為棱的中點,在棱上,且滿足,已知,.(1)求異面直線與所成角的余弦值;(2)求二面角的正弦值.23。某同學(xué)在上學(xué)路上要經(jīng)過三個帶有紅綠燈的路口,已知他在三個路口遇到紅燈的概率依次是,遇到紅燈時停留的時間依次是40秒、20秒、80秒,且在各個路口是否遇到紅燈是相互獨(dú)立的.(1)求這名同學(xué)在上學(xué)路上在第三個路口時首次遇到紅燈的概率;(2)記這名同學(xué)在上學(xué)路上因遇到紅燈停留的總時間為隨機(jī)事件,求的概率分布與期望.試卷答案一、填空題1.2.3.64.5.6.7.48.9.8810.11.12.13.14.二、解答題15.(1)因為,由正弦定理,得.因為,所以.即,所以.因為,所以又因為,所以.(2)由余弦定理及得,,即.又因為,所以,所以.16。(1)因為平面,平面,平面平面,所以.因為平面,平面,所以平面.(2)因為為的中點,,所以為的中點.又因為,所以,又,,所以.又平面,,所以平面.因為平面,所以平面平面.17.(1)由題意,,,且為等邊三角形,所以,,,.(2)要符合園林局的要求,只要最小,由(1)知,,令,即,解得或(舍去),令,,當(dāng)時,是單調(diào)減函數(shù);當(dāng)時,是單調(diào)增函數(shù),所以當(dāng)時,取得最小值.答:符合園林局要求的的余弦值為。18.(1)由題意可得:即從而有,所以橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)直線的方程為,代入,得,因為為該方程的一個根,解得,設(shè),由,得:,即:由,即,得,即,即,所以或,當(dāng)時,直線的方程為,當(dāng)時,代入得,解得,此時直線的方程為.綜上,直線的方程為,.19.(1)當(dāng)時,,所以.當(dāng)時,,,兩式相減得,又,所以,從而數(shù)列為首項,公比的等比數(shù)列,從而數(shù)列的通項公式為.由兩邊同除以,得,從而數(shù)列為首項,公差的等差數(shù)列,所以,從而數(shù)列的通項公式為.(2)由(1)得,于是,所以,兩式相減得,所以,由(1)得,因為對,都有,即恒成立,所以恒成立,記,所以,因為,從而數(shù)列為遞增數(shù)列,所以當(dāng)時,取最小值,于是.(3)假設(shè)存在正整數(shù),使()成等差數(shù)列,則,即,若為偶數(shù),則為奇數(shù),而為偶數(shù),上式不成立.若為奇數(shù),設(shè),則,于是,即,當(dāng)時,,此時與矛盾;當(dāng)時,上式左邊為奇數(shù),右邊為偶數(shù),顯然不成立.綜上所述,滿足條件的不存在.20.(1)函數(shù)的導(dǎo)函數(shù),則在區(qū)間上恒成立,且等號不恒成立,又,所以在區(qū)間上恒成立,記,只需,即解得.經(jīng)檢驗,時,是上的單調(diào)減函數(shù),又,所以實數(shù)的取值范圍是.(2)由,得,①當(dāng)時,有;,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在取得極大值,沒有極小值.②當(dāng)時,有;,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在取得極小值,沒有極大值.綜上可知:當(dāng)時,函數(shù)在取得極大值,沒有極小值;當(dāng)時,函數(shù)在取得極小值,沒有極大值.(3)設(shè)切點為,則曲線在點處的切線方程為,當(dāng)時,切線的方程為,其在軸上的截距不存在.當(dāng)時,令,得切線在軸上的截距為,令,,考慮函數(shù),則,列表如下:↗極大值↘↘極小值↗所以.故切線在軸上的截距的取值范圍是.?dāng)?shù)學(xué)Ⅱ(附加題)參考答案21A.∵是圓的切線,∴,連結(jié),則,∵是圓的切線,∴,又,∴,∴,則,而,∴,∴,由得,代入得,故.21B.矩陣,得,所以,將點代入直線得。21C.由(為參數(shù)),可得直線的普通方程為,由得,所以,圓的標(biāo)準(zhǔn)方程為,因為直線與圓恒有公共點,所以,又因為,所以,解之得,所以,實數(shù)的取值范圍為.21D.證明:因為,所以,因為,當(dāng)且僅當(dāng)時等號成立,所以.22.(1)如圖,以為原點,分別以方向為軸、軸、軸正方向建立空間直角坐標(biāo)系。依題意可得:,,,,,,所以,,所以.因此異面直線與所成角的余弦值為。(2)平面的一個法向量為.設(shè)為平面的一個法向量,又,則即不妨取,則,所以為平面的一個法向量,從而,設(shè)二面角的大小為,則.因為,所以.因此二面角的正弦值為。23.(1)設(shè)這名同學(xué)在上學(xué)路上在第三個路口時首次遇到紅燈為事件,因為事件等于事件“這名同學(xué)在第一和第二個路口沒有遇到紅燈,在第三個路口遇到紅燈”,所以.答:這名同學(xué)在上學(xué)路上在第三個路口時首次遇到紅燈的概率為。(2)的所有可能取值為0,40,20,80,60,100,120,140(單位:秒).的分布列是:;;;;;;;。所以.
徐州市2017—2018學(xué)年度高三年級摸底考試數(shù)學(xué)I參考答案一、填空題1.2.3.64.5.6.7.48.9.8810.11.12.13.14.二、解答題15.(1)因為,由正弦定理,得.················2分因為,所以.即,所以.····························································································4分因為,所以.················································································6分又因為,所以.···············································································7分(2)由余弦定理及得,,即.··································································································10分又因為,所以,····················································································12分所以.·································································14分16。(1)因為平面,平面,平面平面,所以.·························································3分因為平面,平面,所以平面.···························································································6分(2)因為為的中點,,所以為的中點.又因為,所以,············································································8分又,,所以.···························································10分又平面,,所以平面.···························································································12分因為平面,所以平面平面.············································14分17.(1)由題意,,,且為等邊三角形,所以,,·····································································2分,.····················································6分(2)要符合園林局的要求,只要最小,由(1)知,,令,即,解得或(舍去),·························································10分令,,當(dāng)時,是單調(diào)減函數(shù);當(dāng)時,是單調(diào)增函數(shù),所以當(dāng)時,取得最小值.答:符合園林局要求的的余弦值為。··························································14分18.(1)由題意可得:即從而有,所以橢圓的標(biāo)準(zhǔn)方程為:.····································································4分(2)設(shè)直線的方程為,代入,得,因為為該方程的一個根,解得,·······································6分設(shè),由,得:,即:····························································10分由,即,得,即,即,所以或,··························································································14分當(dāng)時,直線的方程為,當(dāng)時,代入得,解得,此時直線的方程為。綜上,直線的方程為,。··························································16分19.(1)當(dāng)時,,所以.當(dāng)時,,,兩式相減得,又,所以,從而數(shù)列為首項,公比的等比數(shù)列,從而數(shù)列的通項公式為.由兩邊同除以,得,從而數(shù)列為首項,公差的等差數(shù)列,所以,從而數(shù)列的通項公式為.·····························································4分(2)由(1)得,于是,所以,兩式相減得,所以,由(1)得,·················································································8分因為對,都有,即恒成立,所以恒成立,記,所以,············································································································10分因為,從而數(shù)列為遞增數(shù)列,所以當(dāng)時,取最小值,于是.······················································12分(3)假設(shè)存在正整數(shù),使()成等差數(shù)列,則,即,若為偶數(shù),則為奇數(shù),而為偶數(shù),上式不成立。若為奇數(shù),設(shè),則,于是,即,當(dāng)時,,此時與矛盾;當(dāng)時,上式左邊為奇數(shù),右邊為偶數(shù),顯然不成立。綜上所述,滿足條件的不存在.····································································16分20.(1)函數(shù)的導(dǎo)函數(shù),則在區(qū)間上恒成立,且等號不恒成立,(表述不對吧,可以去掉,后面再檢驗?)又,所以在區(qū)間上恒成立,·········································2分記,只需即解得.經(jīng)檢驗,時,是上的單調(diào)減函數(shù),又,所以實數(shù)的取值范圍是.··············································4分我的機(jī)子這題答案后三行亂碼,答案我算的是a小于三分之一,原答案忽略了0(2)由,得,①當(dāng)時,有;,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在取得極大值,沒有極小值.②當(dāng)時,有;,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在取得極小值,沒有極大值.綜上可知:當(dāng)時,函數(shù)在取得極大值,沒有極小值;當(dāng)時,函數(shù)在取得極小值,沒有極大值.·········································································································································10分(3)設(shè)切點為,則曲線在點處的切線方程為,當(dāng)時,切線的方程為,其在軸上的截距不存在.當(dāng)時,令,得切線在軸上的截距為,············································································12分令,,考慮函數(shù),則,列表如下:↗極大值↘↘極小值↗所以.故切線在軸上的截距的取值范圍是.······························16分
徐州市2017—2018學(xué)年度高三年級摸底考試(第21(A)(第21(A)題)21A.∵是圓的切線,∴,連結(jié),則,∵是圓的切線,∴,又,∴,∴,則,而,∴,∴,································5分由得,代入得,故.···················································································10分21B.矩陣,得,·························································5分所以,將點代入直線得。··································································10分21C.由(為參數(shù)),可得直線的普通方程為,由得,所以,圓的標(biāo)準(zhǔn)方程為,·························································5分因為直線與圓恒有公共點,所以,又因為,所以,解之得,所以,實數(shù)的取值范圍為.·······
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)習(xí)數(shù)據(jù)庫環(huán)境中的有效評估方法試題及答案
- 數(shù)據(jù)庫模塊化設(shè)計的優(yōu)勢分析試題及答案
- 小學(xué)鼓樂教室管理制度
- 大地影院資金管理制度
- 學(xué)校桌椅使用管理制度
- 廣播電視設(shè)備管理制度
- 員工違反公司管理制度
- 外協(xié)車輛使用管理制度
- 小學(xué)課堂分組管理制度
- 小學(xué)陽光課間管理制度
- 克拉潑改進(jìn)型電容三點式振蕩器
- 介入導(dǎo)管室耗材準(zhǔn)備及管理
- SPC基礎(chǔ)知識培訓(xùn)教材-入門級_課件
- 計量經(jīng)濟(jì)學(xué)課程論文——論產(chǎn)業(yè)結(jié)構(gòu)對我國GDP與經(jīng)濟(jì)增長的影響
- 轉(zhuǎn)動設(shè)備狀態(tài)監(jiān)測標(biāo)準(zhǔn)
- 美術(shù)作品使用授權(quán)書.docx
- 金屬軋制工藝學(xué)1軋制過程基本參數(shù)
- 低壓電纜頭制作安裝施工工藝標(biāo)準(zhǔn)
- 新高一化學(xué)銜接課課程簡介(共2頁)
- 永久性鋼護(hù)筒沉放施工方案(DOC29頁)
- 工程變更申請表(ECR)
評論
0/150
提交評論