2024屆吉林省吉林市舒蘭市重點達標名校中考數學押題卷含解析_第1頁
2024屆吉林省吉林市舒蘭市重點達標名校中考數學押題卷含解析_第2頁
2024屆吉林省吉林市舒蘭市重點達標名校中考數學押題卷含解析_第3頁
2024屆吉林省吉林市舒蘭市重點達標名校中考數學押題卷含解析_第4頁
2024屆吉林省吉林市舒蘭市重點達標名校中考數學押題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林省吉林市舒蘭市重點達標名校中考數學押題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.把一枚六個面編號分別為1,2,3,4,5,6的質地均勻的正方體骰子先后投擲2次,若兩個正面朝上的編號分別為m,n,則二次函數y=xA.512B.49C.172.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°3.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.4.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.5.計算-3-1的結果是()A.2B.-2C.4D.-46.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π7.已知二次函數的與的不符對應值如下表:且方程的兩根分別為,,下面說法錯誤的是().A., B.C.當時, D.當時,有最小值8.山西有著悠久的歷史,遠在100多萬年前就有古人類生息在這塊土地上.春秋時期,山西大部分為晉國領地,故山西簡稱為“晉”,戰國初韓、趙、魏三分晉,山西又有“三晉”之稱,下面四個以“晉”字為原型的Logo圖案中,是軸對稱圖形的共有()A. B. C. D.9.如圖,在矩形ABCD中,連接BD,點O是BD的中點,若點M在AD邊上,連接MO并延長交BC邊于點M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對10.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知點E是菱形ABCD的AD邊上的一點,連接BE、CE,M、N分別是BE、CE的中點,連接MN,若∠A=60°,AB=4,則四邊形BCNM的面積為_____.12.如圖,在矩形ABCD中,AB=4,AD=2,以點A為圓心,AB長為半徑畫圓弧交邊DC于點E,則的長度為______.13.二次函數中的自變量與函數值的部分對應值如下表:…………則的解為________.14.如圖,C為半圓內一點,O為圓心,直徑AB長為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時針旋轉至△B′OC′,點C′在OA上,則邊BC掃過區域(圖中陰影部分)的面積為_________cm1.15.《九章算術》是我國古代數學名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?”該問題的答案是______步.16.一艘貨輪以182km/h的速度在海面上沿正東方向航行,當行駛至A處時,發現它的東南方向有一燈塔B,貨輪繼續向東航行30分鐘后到達C處,發現燈塔B在它的南偏東15°方向,則此時貨輪與燈塔B的距離是________km.三、解答題(共8題,共72分)17.(8分)計算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.18.(8分)作圖題:在∠ABC內找一點P,使它到∠ABC的兩邊的距離相等,并且到點A、C的距離也相等.(寫出作法,保留作圖痕跡)19.(8分)如圖,一個長方形運動場被分隔成A、B、A、B、C共5個區,A區是邊長為am的正方形,C區是邊長為bm的正方形.列式表示每個B區長方形場地的周長,并將式子化簡;列式表示整個長方形運動場的周長,并將式子化簡;如果a=20,b=10,求整個長方形運動場的面積.20.(8分)如圖,在自動向西的公路l上有一檢查站A,在觀測點B的南偏西53°方向,檢查站一工作人員家住在與觀測點B的距離為7km,位于點B南偏西76°方向的點C處,求工作人員家到檢查站的距離AC.(參考數據:sin76°≈,cos76°≈,tan76°≈4,sin53°≈,tan53°≈)21.(8分)如圖,已知某水庫大壩的橫斷面是梯形ABCD,壩頂寬AD是6米,壩高14米,背水坡AB的坡度為1:3,迎水坡CD的坡度為1:1.求:(1)背水坡AB的長度.(1)壩底BC的長度.22.(10分)如圖1,拋物線y=ax2+(a+2)x+2(a≠0),與x軸交于點A(4,0),與y軸交于點B,在x軸上有一動點P(m,0)(0<m<4),過點P作x軸的垂線交直線AB于點N,交拋物線于點M.(1)求拋物線的解析式;(2)若PN:PM=1:4,求m的值;(3)如圖2,在(2)的條件下,設動點P對應的位置是P1,將線段OP1繞點O逆時針旋轉得到OP2,旋轉角為α(0°<α<90°),連接AP2、BP2,求AP2+的最小值.23.(12分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).(Ⅰ)求二次函數的解析式及點A,B的坐標;(Ⅱ)設點Q在第一象限的拋物線上,若其關于原點的對稱點Q′也在拋物線上,求點Q的坐標;(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標.24.一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區別,每次摸球前先攪拌均勻再摸球.(1)若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:本題可先列出出現的點數的情況,因為二次圖象開口向上,要使圖象與x軸有兩個不同的交點,則最低點要小于0,即4n-m2<0,再把m、n的值一一代入檢驗,看是否滿足.最后把滿足的個數除以擲骰子可能出現的點數的總個數即可.解答:解:擲骰子有6×6=36種情況.根據題意有:4n-m2<0,因此滿足的點有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17種,故概率為:17÷36=1736故選C.點評:本題考查的是概率的公式和二次函數的圖象問題.要注意畫出圖形再進行判斷,找出滿足條件的點.2、D【解析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.3、D【解析】

根據有兩個角對應相等的三角形相似,以及根據兩邊對應成比例且夾角相等的兩個三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項不合題意;D、=不能判定△ADB∽△ABC,故此選項符合題意.故選D.【點睛】點評:本題考查了相似三角形的判定,利用了有兩個角對應相等的三角形相似,兩邊對應成比例且夾角相等的兩個三角形相似.4、D【解析】先將25100用科學記數法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D5、D【解析】試題解析:-3-1=-3+(-1)=-(3+1)=-1.故選D.6、C【解析】

由切線的性質定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質,圓周角定理,弧長的計算,解題的關鍵是先求出角度再用弧長公式進行計算.7、C【解析】

分別結合圖表中數據得出二次函數對稱軸以及圖像與x軸交點范圍和自變量x與y的對應情況,進而得出答案.【詳解】A、利用圖表中x=0,1時對應y的值相等,x=﹣1,2時對應y的值相等,∴x=﹣2,5時對應y的值相等,∴x=﹣2,y=5,故此選項正確;B、方程ax2+bc+c=0的兩根分別是x1、x2(x1<x2),且x=1時y=﹣1;x=2時,y=1,∴1<x2<2,故此選項正確;C、由題意可得出二次函數圖像向上,∴當x1<x<x2時,y<0,故此選項錯誤;D、∵利用圖表中x=0,1時對應y的值相等,∴當x=時,y有最小值,故此選項正確,不合題意.所以選C.【點睛】此題主要考查了拋物線與x軸的交點以及利用圖像上點的坐標得出函數的性質,利用數形結合得出是解題關鍵.8、D【解析】

根據軸對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,故此選項錯誤;B、不是軸對稱圖形,故此選項錯誤;C、不是軸對稱圖形,故此選項錯誤;D、是軸對稱圖形,故此選項正確.

故選D.【點睛】此題主要考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、D【解析】

根據矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數.【詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.【點睛】此題主要考查矩形的性質及全等三角形的判定,解題的關鍵是熟知矩形的對稱性.10、C【解析】

直接利用位似圖形的性質得出對應點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質,數形結合思想解題是本題的解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】

如圖,連接BD.首先證明△BCD是等邊三角形,推出S△EBC=S△DBC=×42=4,再證明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解決問題.【詳解】解:如圖,連接BD.∵四邊形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等邊三角形,∴S△EBC=S△DBC=×42=4,∵EM=MB,EN=NC,∴MN∥BC,MN=BC,∴△EMN∽△EBC,∴=()2=,∴S△EMN=,∴S陰=4-=3,故答案為3.【點睛】本題考查相似三角形的判定和性質、三角形的中位線定理、菱形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.12、【解析】試題解析:連接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴的長度為:=.考點:弧長的計算.13、或【解析】

由二次函數y=ax2+bx+c(a≠0)過點(-1,-2),(0,-2),可求得此拋物線的對稱軸,又由此拋物線過點(1,0),即可求得此拋物線與x軸的另一個交點.繼而求得答案.【詳解】解:∵二次函數y=ax2+bx+c(a≠0)過點(-1,-2),(0,-2),∴此拋物線的對稱軸為:直線x=-,∵此拋物線過點(1,0),∴此拋物線與x軸的另一個交點為:(-2,0),∴ax2+bx+c=0的解為:x=-2或1.故答案為x=-2或1.【點睛】此題考查了拋物線與x軸的交點問題.此題難度適中,注意掌握二次函數的對稱性是解此題的關鍵.14、【解析】

根據直角三角形的性質求出OC、BC,根據扇形面積公式計算即可.【詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過區域的面積為:故答案為.【點睛】考核知識點:扇形面積計算.熟記公式是關鍵.15、.【解析】

如圖,根據正方形的性質得:DE∥BC,則△ADE∽△ACB,列比例式可得結論.【詳解】如圖,∵四邊形CDEF是正方形,∴CD=ED,DE∥CF,設ED=x,則CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案為.【點睛】本題考查了相似三角形的判定和性質、正方形的性質,設未知數,構建方程是解題的關鍵.16、1【解析】

作CE⊥AB于E,根據題意求出AC的長,根據正弦的定義求出CE,根據三角形的外角的性質求出∠B的度數,根據正弦的定義計算即可.【詳解】作CE⊥AB于E,12km/h×30分鐘=92km,∴AC=92km,∵∠CAB=45°,∴CE=AC?sin45°=9km,∵燈塔B在它的南偏東15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC=CEsin∠B=故答案為:1.【點睛】本題考查的是解直角三角形的應用-方向角問題,正確標注方向角、熟記銳角三角函數的定義是解題的關鍵.三、解答題(共8題,共72分)17、2+1【解析】

根據特殊角的三角函數值、零指數冪的性質、負指數冪的性質以及絕對值的性質分別化簡各項后,再根據實數的運算法則計算即可求解.【詳解】原式=-1+3+=-1+3+=2+1.【點睛】本題主要考查了實數運算,根據特殊角的三角函數值、零指數冪的性質、負指數冪的性質以及絕對值的性質正確化簡各數是解題關鍵.18、見解析【解析】

先作出∠ABC的角平分線,再連接AC,作出AC的垂直平分線,兩條平分線的交點即為所求點.【詳解】①以B為圓心,以任意長為半徑畫弧,分別交BC、AB于D、E兩點;②分別以D、E為圓心,以大于DE為半徑畫圓,兩圓相交于F點;③連接AF,則直線AF即為∠ABC的角平分線;⑤連接AC,分別以A、C為圓心,以大于AC為半徑畫圓,兩圓相交于F、H兩點;⑥連接FH交BF于點M,則M點即為所求.【點睛】本題考查的是角平分線及線段垂直平分線的作法,熟練掌握是解題的關鍵.19、(1)(2)(3)【解析】試題分析:(1)結合圖形可得矩形B的長可表示為:a+b,寬可表示為:a-b,繼而可表示出周長;(2)根據題意表示出整個矩形的長和寬,再求周長即可;(3)先表示出整個矩形的面積,然后代入計算即可.試題解析:(1)矩形B的長可表示為:a+b,寬可表示為:a-b,∴每個B區矩形場地的周長為:2(a+b+a-b)=4a;(2)整個矩形的長為a+a+b=2a+b,寬為:a+a-b=2a-b,∴整個矩形的周長為:2(2a+b+2a-b)=8a;(3)矩形的面積為:S=(2a+b)(2a-b)=,把,代入得,S=4×202-102=4×400-100=1500.點睛:本題考查了列代數式的知識,屬于基礎題,解答本題的關鍵是結合圖形表示出各矩形的長和寬.20、工作人員家到檢查站的距離AC的長約為km.【解析】分析:過點B作BH⊥l交l于點H,解Rt△BCH,得出CH=BC?sin∠CBH=,BH=BC?cos∠CBH=.再解Rt△BAH中,求出AH=BH?tan∠ABH=,那么根據AC=CH-AH計算即可.詳解:如圖,過點B作BH⊥l交l于點H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7km,∴CH=BC?sin∠CBH≈,BH=BC?cos∠CBH≈.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=,∴AH=BH?tan∠ABH≈,∴AC=CH﹣AH=(km).答:工作人員家到檢查站的距離AC的長約為km.點睛:本題考查的是解直角三角形的應用-方向角問題,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.21、(1)背水坡的長度為米;(1)壩底的長度為116米.【解析】

(1)分別過點、作,垂足分別為點、,結合題意求得AM,MN,在中,得BM,再利用勾股定理即可.(1)在中,求得CN即可得到BC.【詳解】(1)分別過點、作,垂足分別為點、,根據題意,可知(米),(米)在中∵,∴(米),∵,∴(米).答:背水坡的長度為米.(1)在中,,∴(米),∴(米)答:壩底的長度為116米.【點睛】本題考查的知識點是解直角三角形的應用-坡度坡角問題,解題的關鍵是熟練的掌握解直角三角形的應用-坡度坡角問題.22、(1);(2)m=3;(3)【解析】

(1)本題需先根據圖象過A點,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由條件可得到關于m的方程,則可求得m的值;(3)在y軸上取一點Q,使,可證的△P2OB∽△QOP2,則可求得Q點坐標,則可把AP2+BP2轉換為AP2+QP2,利用三角形三邊關系可知當A、P2、Q三點在一條線上時,有最小值,則可求出答案.【詳解】解:(1)∵A(4,0)在拋物線上,∴0=16a+4(a+2)+2,解得a=﹣,∴拋物線的解析式為y=;(2)∵∴令x=0可得y=2,∴OB=2,∵OP=m,∴AP=4﹣m,∵PM⊥x軸,∴△OAB∽△PAN,∴,∴,∴,∵M在拋物線上,∴PM=+2,∵PN:MN=1:3,∴PN:PM=1:4,∴,解得m=3或m=4(舍去);(3)在y軸上取一點Q,使,如圖,由(2)可知P1(3,0),且OB=2,∴,且∠P2OB=∠QOP2,∴△P2OB∽△QOP2,∴,∴當Q(0,)時,QP2=,∴AP2+BP2=AP2+QP2≥AQ,∴當A、P2、Q三點在一條線上時,AP2+QP2有最小值,∵A(4,0),Q(0,),∴AQ==,即AP2+BP2的最小值為【點睛】本題考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里表示三角形的面積及線段和最小值問題,要求會用字母代替長度,坐標,會對代數式進行合理變形,難度相對較大.23、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】

(1)設頂點式,再代入C點坐標即可求解解析式,再令y=0可求解A和B點坐標;(2)設點Q(m,﹣m2+4m+5),則其關于原點的對稱點Q′(﹣m,m2﹣4m﹣5),再將Q′坐標代入拋物線解析式即可求解m的值,同時注意題干條件“Q在第一象限的拋物線上”;(3)利用平移AC的思路,作MK⊥對稱軸x=2于K,使MK=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論