




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省無錫錫山區錫東片達標名校十校聯考最后數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在平面直角坐標系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)2.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數為()A.105° B.110° C.115° D.120°3.如圖,四邊形ABCD內接于⊙O,AB為⊙O的直徑,點C為弧BD的中點,若∠DAB=50°,則∠ABC的大小是()A.55° B.60° C.65° D.70°4.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.105.如圖所示的四邊形,與選項中的一個四邊形相似,這個四邊形是()A. B. C. D.6.如圖,在四邊形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分別以AB、BC、DC為邊向外作正方形,它們的面積分別為S1、S2、S1.若S2=48,S1=9,則S1的值為()A.18 B.12 C.9 D.17.據悉,超級磁力風力發電機可以大幅度提升風力發電效率,但其造價高昂,每座磁力風力發電機,其建造花費估計要5300萬美元,“5300萬”用科學記數法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1088.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數是()A.50° B.60° C.70° D.80°9.下列圖形中,線段MN的長度表示點M到直線l的距離的是()A. B. C. D.10.已知一次函數y=(k﹣2)x+k不經過第三象限,則k的取值范圍是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<211.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值212.如圖,將函數y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數表達式是()A.y=(x﹣2)2-2 B.y=(x﹣2)2+7C.y=(x﹣2)2-5 D.y=(x﹣2)2+4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,P為正方形ABCD內一點,PA:PB:PC=1:2:3,則∠APB=_____________.14.某籃球架的側面示意圖如圖所示,現測得如下數據:底部支架AB的長為1.74m,后拉桿AE的傾斜角∠EAB=53°,籃板MN到立柱BC的水平距離BH=1.74m,在籃板MN另一側,與籃球架橫伸臂DG等高度處安裝籃筐,已知籃筐到地面的距離GH的標準高度為3.05m.則籃球架橫伸臂DG的長約為_____m(結果保留一位小數,參考數據:sin53°≈,cos53°≈,tan53°≈).15.分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=_____.16.如圖,將邊長為的正方形ABCD繞點A逆時針方向旋轉30°后得到正方形A′B′C′D′,則圖中陰影部分面積為_______平方單位.17.如圖,點D為矩形OABC的AB邊的中點,反比例函數的圖象經過點D,交BC邊于點E.若△BDE的面積為1,則k=________18.觀察下列一組數:,它們是按一定規律排列的,那么這一組數的第n個數是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知2是關于x的方程x2﹣2mx+3m=0的一個根,且這個方程的兩個根恰好是等腰△ABC的兩條邊長,則△ABC的周長為_____.20.(6分)如圖,拋物線與x軸交于A,B,與y軸交于點C(0,2),直線經過點A,C.(1)求拋物線的解析式;(2)點P為直線AC上方拋物線上一動點;①連接PO,交AC于點E,求的最大值;②過點P作PF⊥AC,垂足為點F,連接PC,是否存在點P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.21.(6分)某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.求每臺A型電腦和B型電腦的銷售利潤;該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.①求y關于x的函數關系式;②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺,若商店保持同種電腦的售價不變,請你根據以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.22.(8分)如圖,在⊿中,,于,.⑴.求的長;⑵.求的長.23.(8分)已知關于x的方程.當該方程的一個根為1時,求a的值及該方程的另一根;求證:不論a取何實數,該方程都有兩個不相等的實數根.24.(10分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數量關系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,FC=6,將矩形EFCG繞點C旋轉,在整個旋轉過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.25.(10分)如圖,在?ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F.求證:△ADE≌△CBF;求證:四邊形BFDE為矩形.26.(12分)如圖,在?ABCD中,以點4為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于12(1)根據以上尺規作圖的過程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大小.27.(12分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=12(1)求證:直線BF是⊙O的切線;(2)若AB=5,sin∠CBF=55
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:由平移規律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是(1,5),故選B.考點:點的平移.2、C【解析】
如圖,首先證明∠AMO=∠2,然后運用對頂角的性質求出∠ANM=55°;借助三角形外角的性質求出∠AMO即可解決問題.【詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質,熟練掌握和靈活運用相關知識是解題的關鍵.3、C【解析】連接OC,因為點C為弧BD的中點,所以∠BOC=∠DAB=50°,因為OC=OB,所以∠ABC=∠OCB=65°,故選C.4、C【解析】
由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【點睛】本題主要考查切線的性質,利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關鍵.5、D【解析】
根據勾股定理求出四邊形第四條邊的長度,進而求出四邊形四條邊之比,根據相似多邊形的性質判斷即可.【詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項中,四條邊之比為1:3:5:5,且對應角相等,故選D.【點睛】本題考查的是相似多邊形的判定和性質,掌握相似多邊形的對應邊的比相等是解題的關鍵.6、D【解析】
過A作AH∥CD交BC于H,根據題意得到∠BAE=90°,根據勾股定理計算即可.【詳解】∵S2=48,∴BC=4,過A作AH∥CD交BC于H,則∠AHB=∠DCB.∵AD∥BC,∴四邊形AHCD是平行四邊形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故選D.【點睛】本題考查了勾股定理,正方形的性質,平行四邊形的判定和性質,正確的作出輔助線是解題的關鍵.7、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:5300萬=53000000=.故選C.【點睛】在把一個絕對值較大的數用科學記數法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數的整數位數少1(也可以通過小數點移位來確定).8、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉的性質可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉的性質.9、A【解析】解:圖B、C、D中,線段MN不與直線l垂直,故線段MN的長度不能表示點M到直線l的距離;圖A中,線段MN與直線l垂直,垂足為點N,故線段MN的長度能表示點M到直線l的距離.故選A.10、D【解析】
直線不經過第三象限,則經過第二、四象限或第一、二、四象限,當經過第二、四象限時,函數為正比例函數,k=0當經過第一、二、四象限時,,解得0<k<2,綜上所述,0≤k<2。故選D11、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.12、D【解析】
∵函數的圖象過點A(1,m),B(4,n),∴m==,n==3,∴A(1,),B(4,3),過A作AC∥x軸,交B′B的延長線于點C,則C(4,),∴AC=4﹣1=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴AC?AA′=3AA′=9,∴AA′=3,即將函數的圖象沿y軸向上平移3個單位長度得到一條新函數的圖象,∴新圖象的函數表達式是.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、°【解析】
通過旋轉,把PA、PB、PC或關聯的線段集中到同一個三角形,再根據兩邊的平方和等于第三邊求證直角三角形,可以求解∠APB.【詳解】把△PAB繞B點順時針旋轉90°,得△P′BC,則△PAB≌△P′BC,設PA=x,PB=2x,PC=3x,連PP′,得等腰直角△PBP′,PP′2=(2x)2+(2x)2=8x2,∠PP′B=45°.又PC2=PP′2+P′C2,得∠PP′C=90°.故∠APB=∠CP′B=45°+90°=135°.故答案為135°.【點睛】本題考查的是正方形四邊相等的性質,考查直角三角形中勾股定理的運用,把△PAB順時針旋轉90°使得A′與C點重合是解題的關鍵.14、1.1.【解析】
過點D作DO⊥AH于點O,先證明△ABC∽△AOD得出=,再根據已知條件求出AO,則OH=AH-AO=DG.【詳解】解:過點D作DO⊥AH于點O,如圖:由題意得CB∥DO,∴△ABC∽△AOD,∴=,∵∠CAB=53°,tan53°=,∴tan∠CAB==,∵AB=1.74m,∴CB=1.31m,∵四邊形DGHO為長方形,∴DO=GH=3.05m,OH=DG,∴=,則AO=1.1875m,∵BH=AB=1.75m,∴AH=3.5m,則OH=AH-AO≈1.1m,∴DG≈1.1m.故答案為1.1.【點睛】本題考查了相似三角形的性質與應用,解題的關鍵是熟練的掌握相似三角形的性質與應用.15、(y﹣1)1(x﹣1)1.【解析】解:令x+y=a,xy=b,則(xy﹣1)1﹣(x+y﹣1xy)(1﹣x﹣y)=(b﹣1)1﹣(a﹣1b)(1﹣a)=b1﹣1b+1+a1﹣1a﹣1ab+4b=(a1﹣1ab+b1)+1b﹣1a+1=(b﹣a)1+1(b﹣a)+1=(b﹣a+1)1;即原式=(xy﹣x﹣y+1)1=[x(y﹣1)﹣(y﹣1)]1=[(y﹣1)(x﹣1)]1=(y﹣1)1(x﹣1)1.故答案為(y﹣1)1(x﹣1)1.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.16、6﹣2【解析】
由旋轉角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;設B′C′和CD的交點是O,連接OA,構造全等三角形,用S陰影部分=S正方形﹣S四邊形AB′OD,計算面積即可.【詳解】解:設B′C′和CD的交點是O,連接OA,∵AD=AB′,AO=AO,∠D=∠B′=90°,∴Rt△ADO≌Rt△AB′O,∴∠OAD=∠OAB′=30°,∴OD=OB′=,S四邊形AB′OD=2S△AOD=2××=2,∴S陰影部分=S正方形﹣S四邊形AB′OD=6﹣2.【點睛】此題的重點是能夠計算出四邊形的面積.注意發現全等三角形.17、1【解析】分析:設D(a,),利用點D為矩形OABC的AB邊的中點得到B(2a,),則E(2a,),然后利用三角形面積公式得到?a?(-)=1,最后解方程即可.詳解:設D(a,),
∵點D為矩形OABC的AB邊的中點,
∴B(2a,),
∴E(2a,),
∵△BDE的面積為1,
∴?a?(-)=1,解得k=1.
故答案為1.點睛:本題考查了反比例函數解析式的應用,根據解析式設出點的坐標,結合矩形的性質并利用平面直角坐標系中點的特征確定三角形的兩邊長,進而結合三角形的面積公式列出方程求解,可確定參數k的取值.18、【解析】試題解析:根據題意得,這一組數的第個數為:故答案為點睛:觀察已知一組數發現:分子為從1開始的連續奇數,分母為從2開始的連續正整數的平方,寫出第個數即可.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、11【解析】
將x=2代入方程找出關于m的一元一次方程,解一元一次方程即可得出m的值,將m的值代入原方程解方程找出方程的解,再根據等腰三角形的性質結合三角形的三邊關系即可得出三角形的三條邊,根據三角形的周長公式即可得出結論.【詳解】將x=2代入方程,得:1﹣1m+3m=0,解得:m=1.當m=1時,原方程為x2﹣8x+12=(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵2+2=1<6,∴此等腰三角形的三邊為6、6、2,∴此等腰三角形的周長C=6+6+2=11.【點睛】考點:根與系數的關系;一元二次方程的解;等腰三角形的性質20、(1);(2)①有最大值1;②(2,3)或(,)【解析】
(1)根據自變量與函數值的對應關系,可得A,C點坐標,根據代定系數法,可得函數解析式;(2)①根據相似三角形的判定與性質,可得,根據平行于y軸直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得二次函數,根據二次函數的性質,可得答案;②根據勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結論.【詳解】(1)當x=0時,y=2,即C(0,2),當y=0時,x=4,即A(4,0),將A,C點坐標代入函數解析式,得,解得,拋物線的解析是為;
(2)過點P向x軸做垂線,交直線AC于點M,交x軸于點N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設點P(x,-x2+x+2),則點M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當x=2時,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過P作x軸的平行線交y軸于R,交AC的延長線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點坐標是(2,3)或(,).【點睛】本題考查了二次函數綜合題,解(1)的關鍵是待定系數法;解(2)的關鍵是利用相似三角形的判定與性質得出,又利用了二次函數的性質;解(3)的關鍵是利用解直角三角形,要分類討論,以防遺漏.21、(1)每臺A型100元,每臺B150元;(2)34臺A型和66臺B型;(3)70臺A型電腦和30臺B型電腦的銷售利潤最大【解析】
(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據題意列出方程組求解,(2)①據題意得,y=﹣50x+15000,②利用不等式求出x的范圍,又因為y=﹣50x+15000是減函數,所以x取34,y取最大值,(3)據題意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三種情況討論,①當0<m<50時,y隨x的增大而減小,②m=50時,m﹣50=0,y=15000,③當50<m<100時,m﹣50>0,y隨x的增大而增大,分別進行求解.【詳解】解:(1)設每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據題意得解得答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.(2)①據題意得,y=100x+150(100﹣x),即y=﹣50x+15000,②據題意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y隨x的增大而減小,∵x為正整數,∴當x=34時,y取最大值,則100﹣x=66,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.(3)據題意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①當0<m<50時,y隨x的增大而減小,∴當x=34時,y取最大值,即商店購進34臺A型電腦和66臺B型電腦的銷售利潤最大.②m=50時,m﹣50=0,y=15000,即商店購進A型電腦數量滿足33≤x≤70的整數時,均獲得最大利潤;③當50<m<100時,m﹣50>0,y隨x的增大而增大,∴當x=70時,y取得最大值.即商店購進70臺A型電腦和30臺B型電腦的銷售利潤最大.【點睛】本題主要考查了一次函數的應用,二元一次方程組及一元一次不等式的應用,解題的關鍵是根據一次函數x值的增大而確定y值的增減情況.22、(1)25(2)12【解析】整體分析:(1)用勾股定理求斜邊AB的長;(2)用三角形的面積等于底乘以高的一半求解.解:(1).∵在⊿中,,.∴,(2).∵⊿,∴即,∴20×15=25CD.∴.23、(1),;(2)證明見解析.【解析】試題分析:(1)根據一元二次方程根與系數的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數,該方程都有兩個不相等的實數根.考點:1.一元二次方程根與系數的關系;2.一元二次方程根根的判別式;3.配方法的應用.24、(1),45°;(2)不成立,理由見解析;(3).【解析】
(1)由正方形的性質,可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質和矩形的性質以及三點共線,熟練掌握正方形的性質和矩形的性質,知道分類討論三點共線問題是解題的關鍵.本題屬于中等偏難.25、(1)證明見解析;(2)證明見解析.【解析】
(1)由DE與AB垂直,BF與CD垂直,得到一對直角相等,再由ABCD為平行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 1008.1-2016甜瓜生產技術規范第1部分:春季大棚栽培
- 雜糧加工能耗分析與節能措施考核試卷
- 辦公環境維護與安全管理考核試卷
- 管道工程科研創新平臺構建考核試卷
- 豆類食品加工過程中的質量控制考核試卷
- 2024年軌道交通裝備用涂料資金申請報告代可行性研究報告
- 2025年JAVA系統優化報告試題及答案
- 直播流量分成與平臺生態建設合作協議
- 2025年中國閉合裝置行業市場前景預測及投資價值評估分析報告
- 美容美發連鎖品牌品牌加盟店人力資源配置與培訓合同
- 2025年軍隊文職統一考試《專業科目》會計學試卷真題答案解析
- 2025年鐵路集裝箱市場前景分析
- 2024-2025中國商旅管理白皮書
- 小學心理健康家長會課件
- 小紅書種草營銷師(初級)認證考試真題試題庫(含答案)
- JGJ196-2010建筑施工塔式起重機安裝、使用、拆卸安全技術規程
- 人民民主是全過程民主
- 《學弈》優質課教學課件
- 2022年檢驗科三基試題及答案
- RTO三室蓄熱式燃燒爐介紹(課堂PPT)
- “人人都是班組長”實施方案
評論
0/150
提交評論